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ABSTRACT 

Coal-tar contamination resulting from former manufactured gas plant (FMGP) operations 

pervades the shallow aquifer underlying a small area south of downtown Cherokee, Iowa. Monitored 

natural attenuation (MNA) is of interest for remediating this contaminated aquifer system. However, 

it is a complex process to identify intrinsic biodégradation of specific polycyclic aromatic 

hydrocarbons (PAHs) at contaminated FMGP sites because several hundred potential substrates 

comprise coal-tar mixtures. Microbial activity on non-PAH carbon sources may give rise to plume-

scale biogeochemical responses that indicate biodégradation activity. Incubations with site sediments 

may poorly reflect intrinsic conditions. Molecular microbiological techniques coupling whole-cell 

hybridizations and microautoradiography (MICRO-FISH) are used to identify PAH-degrading 

bacteria in the coal-tar impacted site sediments and ascertain their intrinsic activity. These techniques 

are used to provide a link between plume-scale biogeochemical monitoring, fate and transport 

modeling, incubations with site sediments, and molecular characterizations of the intrinsic microbial 

community structure. Through this innovative approach, the potential for natural attenuation of 

specific PAHs in the contaminated aquifer are explored. 

A superposition of 2-D reactive transport analytical solutions was used to estimate the best-fit 

first-order degradation rate coefficients for benzene (0.0084 d"1), ethylbenzene (0.0076 d"1), xylenes 

(0.0057 d'1), naphthalene (0.0058 d"1), 1 -methylnaphthalene (0.0042 d"1), acenaphthene (0.0011 d"1), 

acenaphthylene (0.00069 d"1), and fluorene (0.0058 d"1). Contaminant mass transformation rates 

based on analytical modeling compared favorably to estimates based on depletion of terminal electron 

accepting compounds using a geochemical mass balance approach. Total DAPI-detected cell counts 

in the coal-tar source region reached 1.45 x 107 organisms per gram sediments, three orders of 

magnitude greater than that of non-affected sediments, suggesting active growth on the coal-tar 

constituents in situ. Whole-cell hybridizations with site sediments indicated that Actinobacteria, y-

Proteobacteria, Bacteriodetes, and (3-Proteobacteria dominated the aerobic (>1 mg/L) in-situ 

microbial community structure. Sulfate-reducing bacteria were enriched in anaerobic environments 

exhibiting hydrogen sulfide production and oxidation-reduction potentials as low as -247 mV. 

Mineralization of [UL-14C]naphthalene in anaerobic nitrate- and sulfate-amended laboratory-

scale incubations was observed in sediments corresponding to nitrate and sulfate-reducing aqueous 

geochemical environments exhibited in situ. Mineralization of [UL-'4C]naphthalene and [9-

14C]phenanthrene in anaerobic iron-amended incubations was also observed, but did not correlate 

well to aqueous geochemical indicators of iron-reduction. Aerobic incubations resulted in up to 61% 

mineralization of naphthalene and 42% mineralization of phenanthrene. Enrichment of f3- and y-
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Proteobacteria in aerobic incubations implicated the activity of these phylotypes in PAH degradation. 

MICRO-FISH methods to track substrate uptake to specific microbial cell types were adapted for 

PAH uptake in coal-tar DNAPL contaminated sediments. MICRO-FISH confirmed the activity of (3-

and y-Proteobacteria in aerobic incubations, but indicated that Actinobacteria were also active in the 

uptake of [9-14C]phenanthrene, even though their populations declined in the microbial community. 

MICRO-FISH was applied to several sediments from the coal-tar impacted aquifer, and 

established the activity of /3-Proteobacteria, y-Proteobacteria, and Actinobacteria in growth on both 

[9-14C]phenanthrene and [UL-14C]naphthalene. The presence of the /3-Proteobacteria in the in situ 

microbial community structure was overshadowed by that of the Actinobacteria and y-Proteobacteria 

indicating that the later two were the primary degraders of naphthalene and phenanthrene in situ. 

Cell-specific PAH biodégradation rates were calculated based on active bacterial populations 

(comprising less than 5% of the microbial community) and liquid scintillation counting of the washed 

biomass. Cell-specific naphthalene biodégradation rates based on MICRO-FISH (4.7 to 97 pg active 

ceir'-d"1) compared favorably to estimates using the first-order degradation rate coefficient presented 

above (0.7 to 19 pg active cell"'d"'). Cell-specific phenanthrene biodégradation rates based on 

MICRO-FISH were between one and two orders of magnitude greater than model predicted values. 

Discrepancies in the biodégradation rates for phenanthrene may have resulted from fitting limited 

data in analytical models and/or dosing large masses of readily available 14C-PAH in order to elicit an 

autoradiographic response for MICRO-FISH. 

These studies suggest that enrichment of specific microbial phylotypes associated with coal-

tar pollution relative to nearby pristine conditions may not be a reliable marker for PAH-degrading 

microbes. Similarly, enrichment of microbial phylotypes in laboratory-scale incubations may not 

reflect uptake of specific PAH compounds identified by MICRO-FISH. The results of this study 

support active natural attenuation of PAH compounds in this coal-tar polluted aquifer, and suggest 

that direct evidence of intrinsic degradation of PAH pollutants such as that presented in this work is 

necessary to effectively demonstrate natural attenuation at complex PAH contaminated sites. Based 

on these results, the MICRO-FISH technique may be an effective tool for establishing tertiary lines of 

evidence that can be used to support intrinsic bioremediation of at least low-ring coal-tar PAHs. 
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1. INTRODUCTION 

1.1 History of manufactured gas and coal-tar pollution 

From the turn of the 19th century to the middle of the 20th century, manufactured gas 

dominated the energy industry. Manufactured gas was produced locally and piped to municipalities, 

businesses, and homes primarily for heating, lamp light, and cooking purposes. Manufactured gas 

was initially made from coal feedstock by heating the coal in the absence of oxygen in vessels called 

retorts. This process converted approximately 40% of the coal to gaseous products, which cooled in 

the hydraulic main and condenser, precipitating water and coal tar byproducts. By the late 1800's the 

carbureted water-gas process gained popularity due to a superior gas with a higher BTU value and 

increased efficiency in gas manufacture. This processes passed stream through an incandescent mass 

of coke feedstock to produce water gas, which was passed through a carburetor in which light gas oil 

was sprayed into the gas stream. This light gas oil and water gas mixture was heated to thermally 

crack the oil vapors fixing them into the gas. Tar byproducts were removed from the gas stream in a 

series of tar separators and condensing units. Coal-tars were collected as byproducts at several 

locations in manufactured gas facilities, commonly precipitated from ammoniacal or oil liquors or 

gravity-separated from scrubbing waters. These liquor byproducts and separated tars were generated 

at the rate of hundreds to thousands of gallons per day. 

The carbureted water gas process enabled many medium to small-size towns to operate 

manufactured gas facilities. Brown's Directory of North American Gas Plants listed 1,500 primary 

gas producing facilities in operation by 1887 based on membership in gas associations. Vast 

quantities of byproducts were produced from the gas manufacturing process providing cheap 

materials for product manufacture and driving invention in the industrial age. In 1874 Alexander 

Findlay wrote a book titled The Treasures of Coal Tar, touting the beneficial uses of coal-tar 

compounds, particularly in the chemical industry. Notable innovations for coal-tar byproducts 

include the use of naphtha for processing raw rubber for commercial products (-1820), the first 

successful synthesized dyes (anilines) used heavily in the textile industry (-1850), and the first the 

plastic, bakelite (1907). Other products derived from coal-tars included explosives, medicines, 

fertilizers, perfumes, flavors, food preservatives, and photographic materials. 

Many disadvantages of the manufactured gas process and its byproducts were also well 

known during its use. Prior to the widespread manufacture of gas in the United States, there were 

reports of scrotal cancer in chimney sweeps linked to exposure to coal tars in Britain. By the mid 

1850's deaths to aquatic life, crop damage, drinking water contamination, and health problems were 
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all attributed to the discharge of gas works residuals. Unfortunately, the large volumes of hazardous 

byproducts generated on a daily basis and limited storage forced plant operators to make choices 

regarding the disposition of low commercial value wastes. Commonly, this involved depositing 

wastes in on-site dumps or transporting to nearby waste dumps. Nuisance lawsuits against gas works 

to recover damages caused by dumping their waste byproducts were widespread by the late 1800's. 

By the early 1900's shortages in light fuel oils due to the emerging automotive industry and coke 

byproducts forced many carbureted water gas plants to operate with inferior coals as reactor feedstock 

and to carburet with heavier oils leading to higher water content tar byproducts of low commercial 

value, increasing waste byproducts. With increased litigation and awareness of the impacts of 

environmental pollution, states began enacting environmental regulations limiting discharge of gas 

works wastes to rivers and streams between the early and mid 1900's. By the mid 1960's the last of 

the town gas works were closed, primarily due to competition from cleaner and more efficient natural 

gas. Contamination resulting from poor waste disposal practices at these facilities is vast and persists 

today. 

1.2 Modern environmental concerns regarding coal-tar pollution 

Finding coal tar at a former manufactured gas facility during a site investigation is not like 

finding buried treasure. Coal-tars are hydrophobic and denser than water. In the subsurface, they 

migrate downward, coating soils surfaces and pooling on impermeable layers deep in aquifer systems 

making free product recovery difficult. Residual coal-tar DNAPLs solubilize slowly, providing a 

long-term source for groundwater contamination. Due to their hydrophobic properties and low 

volatility, off the shelf remediation technologies relying on physical removal mechanisms such as 

pump and treat, soil venting, or air sparging are relatively ineffective for coal-tar removal. These 

factors greatly increase the costs and uncertainty associated with remediation of former manufactured 

gas plant sites. 

Because of the difficulties associated with removing all residual coal tars from contaminated 

soils and aquifer sediments, there is intense interest in the potential for the intrinsic system to 

assimilate and detoxify residual coal-tar contamination. Of primary concern at coal-tar impacted sites 

are the polycyclic aromatic hydrocarbons (PAHs), which may cause toxic and or carcinogenic effects 

in exposed individuals. All 16 U.S. EPA Priority PAH pollutants have been shown to be susceptible 

to aerobic biodégradation in laboratory studies, and many PAH-contaminated sites exhibit changes in 

geochemical environments commonly associated with increased microbial activity and intrinsic 
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bioremediation. However, coal-tars contain hundreds of compounds, any of which may elicit 

hydrogeochemical responses, leading to misinterpretation of the measured geochemical data relative 

to coal-tar PAH contamination. There remains ambiguity about the specific activity of PAH-

degrading organisms in-situ necessary to verify intrinsic bioremediation of PAH pollutants. Many 

PAH compounds are sparingly soluble, typically exhibiting sorption nonlinearities, source materials 

phase change and unique dissolution characteristics, and complex biodégradation patterns limited by 

the bioavailability of sorbed contaminant mass and complicated by the inhibitory and/or cometabolic 

effects of co-contaminating compounds in contaminated soils and sediments. Uncertainty regarding 

these factors limits interpretation of groundwater monitoring data at coal-tar impacted sites. The low 

concentrations of PAH compounds relative to analytical detection limits at contaminated sites also 

make fate and transport modeling particularly sensitive to estimates of key hydrodynamic parameters 

and model assumptions such as lateral and transverse dispersivity and linear and reversible sorption. 

Considering these issues, a recent report by the National Research Council (2000) on MNA ranked 

the current understanding of the fate and transport of PAH compounds at contaminated sites as 

"moderate" and thus the likelihood of successful application of natural attenuation technology as 

"low". Based on these findings, acceptance of monitored natural attenuation at PAH contaminated 

sites will require a much greater level of evidence and increased monitoring efforts to support 

intrinsic degradation potential than more traditional applications of this technology at fuel release 

sites. 

Following the recommendations of the U.S. EPA, a three-tiered approach may be used to 

evaluate natural attenuation as a remedial mechanism at contaminated sites. This approach is 

primarily weighted on historical data displaying a clear and meaningful trend of decreasing 

contaminant mass (1st line of evidence), which is supported by indirect measures of intrinsic 

remediation such as changes in the geochemical environment potentially related to biodégradation of 

pollutants coupled with modeling approaches to estimate the rate at which the pollutants will be 

reduced to required levels (2nd line of evidence). For particularly challenging cases such as PAH 

pollution, the U.S. EPA suggests tertiary lines of evidence based on field or microcosm studies that 

directly demonstrate microbial activity in the aquifer material and its ability to transform the 

contaminants of concern. However, laboratory-scale assays with contaminated site media typically 

result in an altered (enriched) microbial communities that may not accurately reflect in-situ 

conditions. Therefore a gap exists between interpreting microcosm study results as related to field-

scale processes. In these cases, linking microcosm studies to the site condition is of great importance 

as regulatory acceptance of in situ bioremediation efforts hinge on the ability to definitively attribute 
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decreasing hydrocarbon concentrations measured in situ to microbial degradation, as opposed to 

abiotic processes that may lend to similar plume-scale behavior such as non-linear sorption, 

dispersion, and volatilization. For natural attenuation to become a viable remedial option at coal-tar 

impacted sites, a better understanding of the capacity of indigenous microbial consortia to transform 

PAHs into innocuous byproducts must be realized. 

1.3 Specific objectives and approach 

This work stems from expedited site characterization activities and groundwater monitoring 

performed at a former manufactured gas plant site in Cherokee, Iowa between August 2001 and 

March 2003. The manufactured gas plant operated from 1905 to 1936 using the carbureted water gas 

process. Site investigations prior to those above indicated extensive coal-tar contamination. This led 

to the excavation and removal of contaminated soil to a maximum depth of 2.4 m or the water table. 

Groundwater monitoring data prior to 2001 indicated that the contaminant plume emanating from the 

coal-tar source was of limited aerial extent. However, hydraulic irregularities in groundwater flow 

complicated modeling efforts to estimate intrinsic degradation potential. Due to the difficulties 

associated with complete removal of free-phase coal-tar materials, the limited extent of plume 

migration, and limited routes of exposure to the contaminants by potential receptors, monitored 

natural attenuation as a "polishing step" was of interest at this site. 

The primary objectives of expedited site characterizations were to obtain data to construct a 

realistic site conceptual hydrologie model, characterize the aqueous geochemical environment, and 

identify whether or not PAH compounds were biodegrading in situ. Based on groundwater 

monitoring well data prior to August 2001, there was evidence that contaminant concentrations were 

declining with time following source removal action (1st line of evidence). However, there was 

ambiguity regarding the reason for the declining concentrations, whether due to reduction of source 

mass and decreased leaching and/or through biological action. The work presented herein addresses 

the latter two of the primary objectives and considers both the three tiered approach suggested by the 

U.S. EPA for exploring monitored natural attenuation as a remedial mechanism and the need to better 

link the in situ condition to laboratory-scale studies to provide more weight to the argument for 

intrinsic degradation of coal-tar PAHs. 

The innovative approach taken in this study involves integrating plume-scale aqueous 

geochemical monitoring, fate and transport modeling, and molecular characterizations of the intrinsic 

microbial community structure with novel molecular microbiological techniques modified in this 
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study for tracking uptake of individual PAHs to specific cell types in the coal-tar impacted sediments. 

The unique data sets provided by these techniques may yield a link between tertiary lines of evidence 

of natural attenuation such as laboratory-scale incubations and secondary lines of evidence such as 

plume-scale modeling and monitoring data. Through this approach, the presence of PAH-degrading 

microbial phylotypes can be identified in-situ as a portion of the intrinsic microbial community. Cell-

specific biodégradation rates in short-term laboratory incubations can be compared to model 

estimates of PAH degradation, better linking laboratory-scale assays to the in-situ condition. 

The specific objectives of this work were to: 

1. Apply coupled analytical fate and transport solutions and lumped-hydrocarbon 

geochemical mass balance approaches to investigate intrinsic biodégradation of coal-

tar impacted systems and estimate pollutant mass degradation rates in the aquifer 

underlying the Cherokee FMGP site (2nd line of evidence) 

2. Determine whether the spatial heterogeneity in the in-situ microbial community 

structure as related to known PAH-degrading microbial phylotypes reflect the 

heterogeneity in the aqueous geochemistry and pollutant concentrations observed in 

groundwater measurements in situ 

3. Identify whether the aqueous geochemical environments exhibited in-situ are related 

to the degradation of U.S. EPA priority PAH compounds based on laboratory 

incubations with contaminated site sediments (3rd line of evidence) 

4. Determine whether the relative enrichment of specific microbial phylotypes observed 

in situ as described in objective 2 correlate to the enrichment of specific microbial 

phylotypes observed in laboratory incubations of objective 3, further supporting in-

situ microbial growth on priority PAH pollutants 

5. Develop procedures and address potential interferences for coupling whole-cell 

hybridization and microautoradiography to track uptake of select PAH compounds to 

specific microbial types in the microbial communities populating coal-tar impacted 

sediments 

6. Apply combined whole-cell hybridization and microautoradiography techniques to 

identify the spatial heterogeneity in microbial cell types growing on naphthalene and 

phenanthrene in polluted sediments from the coal-tar impacted aquifer underlying the 

Cherokee FMGP site and identify relationships between the degrading microbial 

community structure and the overall microbial community structure identified in 

objective 2. 
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7. Compare and contrast estimates of the in-situ biodégradation rates of naphthalene and 

phenanthrene based on molecular microbiological measurements with the whole-cell 

hybridization and microautoradiographic techniques to those of plume-scale 

analytical modeling approaches in objective 1 in order to evaluate the potential for 

molecular microbiological tools to tie secondary lines of evidence of natural 

attenuation to tertiary lines of evidence better supporting natural attenuation 

investigations 

The application of these seven objectives towards the goal of displaying intrinsic remediation 

potential at the Cherokee FMGP site and implications for future investigations of natural attenuation 

at PAH-contaminated sites are the focus of the work presented herein. 

1.4 Dissertation Organization 

This dissertation describes a unique approach taken to evaluate the potential of the intrinsic 

microbial community populating coal-tar impacted aquifer sediments underlying a former 

manufactured gas plant site in Cherokee, Iowa to assimilate and detoxify polycyclic aromatic 

hydrocarbons (PAHs). It is organized into a total of seven chapters and two appendices. Chapter 1 

introduces the research presented in the proceeding chapters, placing the work into an historical and 

environmental context. Chapter 2 presents a summary of literature reviewed encompassing published 

works essential to providing a fundamental basis for the work performed herein. Much of Chapter 2 

was published as a critical review of PAH-contaminated sites in the ASCE Practice Periodical of 

Hazardous, Toxic, and Radioactive Waste Management. Chapter 3 is an article submitted to the 

Journal of Contaminant Hydrology. This chapter summarizes the Cherokee FMGP site conceptual 

model and presents estimates of the intrinsic biodégradation of PAH pollutants based on both a 

simplified lumped-hydrocarbon geochemical mass balance approach and analytical plume-scale 

modeling. Results of the two models are compared to identify variability and limitations of plume-

scale modeling of coal-tar impacted sites. Chapter 4 is an article to be submitted to Applied and 

Environmental Microbiology. This chapter explores PAH biodégradation in the contaminated aquifer 

sediments underlying the Cherokee FMGP site based on an integrated biogeochemical and molecular 

microbiological approach. Perturbation of microbial community structures of contaminated versus 

nearby pristine sediments are investigated spatially relative to the aqueous geochemical environments 

exhibited in situ, and are compared to the mineralization of select PAH compounds in aerobic and 

anaerobic incubations. Enrichment of select microbial phylotypes in laboratory-scale incubations are 
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compared and contrasted to the intrinsic microbial community structure. Promises and pitfalls of 

these types of molecular microbiological approaches for supporting investigations of intrinsic 

bioremediation are discussed considering the uptake of phenanthrene by specific bacteria identified 

with whole-cell hybridizations and microautoradiography. Chapter 5 is an article to be submitted to 

the Journal of Microbiological Methods. It describes detailed procedures for properly interfacing 

whole-cell hybridizations and microautoradiography (MICRO-FISH) for tracking the uptake of 

polycyclic aromatic hydrocarbons to specific microbial cell types in sediments contaminated with 

coal-tar DNAPLs. Several interferences are addressed including autofluorescence from soils and 

DNAPL residuals, autoradiographic false-positives from sorption of hydrophobic radioisotopes to 

bacterial cell surfaces, and the effects of incubation time on autoradiographic detection and 

perturbation from the initial microbial community structure. Application of MICRO-FISH to 

contaminated site sediments of several locations in the coal-tar source region and resulting plume is 

presented in Chapter 6. The spatial heterogeneity in bacterial phylotypes growing on naphthalene 

and phenanthrene are linked to the intrinsic microbial community structure. Cell-specific uptake and 

mineralization rates of naphthalene and phenanthrene based on MICRO-FISH results are compared to 

estimates of the plume-scale first-order degradation rate coefficients presented in Chapter 3. The 

results of this study are used to better identify intrinsic bioremediation potential of these compounds 

at the Cherokee FMGP site. Chapter 6 will be submitted to Environmental Science and Technology. 

Chapter 7 provides a summary of the work presented in Chapters 3 through 6, and includes 

recommendations for future study related to this work. Appendix A summarizes aqueous 

geochemical properties and PAH concentrations measured in groundwater at the Cherokee FMGP 

site. Appendix B summarizes the methods used for groundwater sampling. 

Advisors and coworkers in the natural attenuation research group at Iowa State University 

included Dr. Bruce H. Kjartanson, Dr. Johanshir Golchin, and Dr. Greg A. Stenback, who provided 

valuable input for writing and revising both the critical review published from portions of Chapter 2 

as well as technical guidance in the modeling work presented in Chapter 3. As such, their names 

were included as co-authors on the final manuscripts for these chapters. Dr. Thomas Moorman 

provided input and technical guidance in all of the microbiological work performed, edited and 

revised manuscripts, and made available laboratory space in the USDA's National Soil Tilth 

Laboratory in Ames Iowa. He is included as a co-author on the manuscripts for Chapters 4, 5, and 6. 

Dr. Say Kee Ong was listed as a co-author on all manuscripts. He served as the primary research 

professor for all the work performed herein, providing technical guidance in every aspect of the work 

and in editing and revising all manuscripts. 
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2. LITERATURE REVIEW 

Adapted from a paper published in the Practice Periodical of Hazardous, Toxic, and Radioactive 

Waste Management entitled "Natural Attenuation of PAH Contaminated Sites: A Review" 

Shane W. Rogers, Say Kee Ong, Bruce H. Kjartanson, Johanshir Golchin, and Greg A. Stenback 

2.1 Abstract 

Natural attenuation is currently being applied as a remedial technology at many petroleum 

hydrocarbon and chlorinated compound sites. Although information on the use of natural attenuation 

at these sites is abundant, information on sites contaminated with polycyclic aromatic hydrocarbons 

(PAH) is limited. An assessment report by the National Research Council on natural attenuation 

indicates that the current understanding of fate and transport of PAH compounds at contaminated 

sites is "moderate" and the likelihood of success in the application of natural attenuation at these sites 

is expected to be "low" given the current level of understanding. The purpose of this paper is to 

review documented work on natural attenuation of PAH-contaminated sites and summarize 

information to improve our level of understanding and address important issues for the 

implementation of natural attenuation at these sites. The main processes affecting the attenuation of 

PAH compounds are sorption and biodégradation. The relative contribution of each of the two 

attenuation processes is unclear. The few studies available tend to focus on the degradation of low 

molecular weight PAHs such as naphthalene, acenaphthylene, and phenanthrene. The estimated first-

order decay rates of naphthalene, acenaphthylene, and phenanthrene from the various studies were 

0.00057 to 0.0063 d"1, 0.00027 d"1, and 0.000027 to 0.063 d"1, respectively. Some of the issues that 

need further investigation include: the lack of understanding of the solubility and dissolution of PAH 

NAPLs; the interactions and effects of the more soluble low molecular weight PAHs on the sparingly 

soluble high molecular weight PAHs; and the utilization of electron acceptors other than oxygen 

during microbial degradation of PAHs under complex mixture conditions. As significant variability 

in monitoring data exist at many PAH contaminated sites, extended monitoring efforts and tertiary 

lines of evidence may be necessary for effective evaluation of the potential of select sites for intrinsic 

degradation. Emerging molecular microbiological approaches may be particularly well suited for 

these investigations and may result in more effective monitoring efforts. Overall, the natural 

attenuation of low molecular weight PAHs appears to be promising for the sites investigated. 
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2.2 Introduction 

Over the last decade, there has been an increase in the application of natural attenuation as a 

remedial alternative for the cleanup of contaminated groundwater. The increase is generally in 

response to the high capital and operating costs and technical limitations of some of the engineered 

cleanup technologies for the remediation of these contaminated sites. A survey of state underground 

storage tank programs indicates that as many as 15,780 sites are applying monitored natural 

attenuation as a remedial technology (MacDonald, 2000). Correspondingly, the number of 

publications appearing on this subject has increased recently with several noteworthy publications 

such as that of Wiedemeier et al. (1999). However, most of the literature is centered on two of the 

more commonly found classes of contaminants, petroleum hydrocarbons and chlorinated compounds. 

Nevertheless, there are several completed studies and some that are in progress in extending the 

concept of natural attenuation to other pollutants such as heavy metals and polycyclic aromatic 

compounds (PAHs). PAH compounds are common byproducts of petroleum and chemical industries 

and are the third most commonly found class of contaminants at Superfund sites (US EPA, 2000). A 

recent assessment of natural attenuation indicates that current understanding of fate and transport of 

PAH compounds at contaminated sites is "moderate" and that the likelihood of success in the 

application of natural attenuation at these sites is expected to be "low" given the current level of 

understanding (NRC, 2000). With that in mind, this article reviews the current literature on natural 

attenuation of sites contaminated with PAHs and highlights some of the issues involved in 

implementing natural attenuation as a remedial technology at PAH-contaminated sites. 

2.3 PAH-Contaminated Sites 

PAH-contaminated sites are generally associated with industrial activities such as wood 

preservation, petroleum refining, transportation, former manufactured gas plants (FMGPs), lignite 

pyrolysis sites, military installations, and municipal and hazardous waste landfills. In many cases, 

PAHs at these sites are found with other contaminants such as heterocyclic compounds, 

monoaromatic compounds, cyanides, pesticides, pentachlorophenol, and arsenic-based wood 

preservatives. Of the 1,226 sites currently registered on the Superfund National Priority List (NPL), 

598 are contaminated with PAH compounds (48.8%). The number of Superfund sites with PAHs as 

contaminants is only surpassed by sites containing volatile organic compounds, which include 
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chlorinated solvents, benzene, toluene, ethylbenzene and xylenes (BTEX) (849 sites (69.2%)), and 

metals (794 sites (64.8%)) (US EPA, 2000). 

Although there are many PAH-contaminated sites with different sources of contamination, 

much remedial work has been placed on sites originating from creosote works, wood treatment 

industries, coking industries, and FMGPs, as they comprise the largest fraction of PAH-contaminated 

sites. Burton et al. (1988) reported that there were approximately 700 sites in the United States alone 

where wood preservation is currently conducted or has been conducted in the past. The number of 

creosote-contaminated sites was estimated to be approximately 700 by Mueller et al. (1989). In 

1984, Edison Electric Institute estimated that the number of FMGP sites that pose an environmental 

threat was approximately 1,500 (Edison Electric Institute, 1984). In 1997 Larsen indicated that there 

may be more than 5000 former MGP sites in the United States, with many requiring some form of 

remedial action. According to Hatheway (1997), this estimate was conservative, as it did not include 

potentially contaminated FMGP sites. Hatheway asserted that the number of contaminated FMGP 

sites in North America alone may reach beyond 32,000, considering that there were similar gas 

manufacturing facilities located at rail yards, military posts, arsenals, institutes, and large residential 

estates that were not reported. Creosote and coal tar compounds have been cited as a widespread 

problem in nearly all industrialized countries (Broholm et al., 1999). According to Delorme and 

Carlier (1998), the French National Gas Company alone owns 467 FMGP plants. In Germany, the 

total number of FMGP sites is estimated to reach about 1,000 (Knopp et al., 2000), and in Denmark, 

Arvin and Flyvbjerg (1992) estimated that there are 35 - 45 creosote waste sites per million people. 

Contamination at these sites has resulted from leaking tanks and pipe networks, incomplete 

separation of tar from aqueous liquids, drippings from treated lumber (wood treatment facilities), 

spills, decommissioning activities, and leachate from unlined storage ponds or shallow wells. In any 

case, the nonaqueous phase liquids (NAPLs) released from sites that contained these compounds tend 

to be denser than water and usually migrate downward and laterally into the subsurface by gravity 

and capillary forces. In many of these sites, the NAPLs may pool on the confining layer of the 

aquifer and move along its geologic gradient. Given the physical-chemical properties of PAH 

compounds, they can be very challenging to remediate. 

2.4 Monitored Natural Attenuation: Regulatory Concerns 

The problem of environmental PAH contamination is a global issue. Based on their chemical 

properties, conventional physical/chemical remediation techniques may not be completely effective in 
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removing PAH compounds from the subsurface. However, those same properties lend to strong 

partitioning to soils and sediments resulting in low potential for contaminant migration. Combined 

with their potential to biodegrade to innocuous byproducts, the prospect for intrinsic systems to 

stabilize and cleanse themselves of residual PAH contamination is of intense interest. The following 

discussion of regulatory concerns provides the basis for evaluating PAH compounds in terms of their 

potential for undergoing natural attenuation in polluted environments. 

The U.S EPA has established guidelines for implementing and demonstrating monitored 

natural attenuation (MNA) at contaminated sites (EPA, 1999). In general, they suggest the use of 

appropriate active (engineered) source control measures or active remedial measures combined with 

or followed by MNA. Monitoring efforts should be used for detailed site characterization and to 

compare actual (long-term) site conditions with expectations based on numerical and/or analytical 

modeling approaches. The EPA prefers processes that (1) remove and treat free-phase NAPLs and 

source materials, and (2) degrade or destroy contaminants rather than stabilize (physically) or dilute 

them. In evaluating whether or not MNA is appropriate for a given site, the EPA will be primarily 

interested in strong evidence of specific natural attenuation processes and their action on the 

contaminants, a stable or shrinking groundwater contaminant plume with limited migration, and no 

unacceptable risks to human health or environmental resources posed by the contaminants over the 

MNA remedial period. As it is not uncommon to observe at PAH contaminated sites free-phase coal-

tar or creosote contamination originating from operations of over a century past, it is highly unlikely 

that MNA of PAH contaminated sites will succeed without implementation of active source control 

and/or removal measures. 

A three tiered approach to documenting the potential for MNA at contaminated sites is 

suggested by the U.S. EPA (1999). This approach centers about an effective monitoring program that 

yields site-specific data of sufficient quality to estimate with an acceptable level of confidence both 

the rate of contaminant attenuation based on specific attenuation processes and the timeframe for 

achieving remediation objectives. Specifically, for MNA to be acceptable, the EPA suggest that 

historical data display a clear and meaningful trend of decreasing contaminant mass at appropriate 

monitoring points. This should be supported by indirect measures of intrinsic remediation such as 

changes in the aqueous geochemical environment potentially related to biodégradation of pollutants 

(consumption of potential terminal electron accepting compounds or production of reduced species 

associated with specific terminal electron accepting processes) coupled with modeling approaches to 

estimate the rate at which the pollutants will be reduced to required levels (U.S. EPA, 1999). In the 

case of PAH compounds, which may be particularly challenging to establish clear trends with a high 
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degree of confidence, tertiary lines of evidence based on field or microcosm studies that directly 

demonstrate intrinsic microbial activity and biological degradation of the PAH compounds to 

innocuous byproducts may be necessary (U.S.EPA, 1999). 

2.5 PAH Compounds of Concern 

PAHs are defined as compounds consisting of carbon and hydrogen in the form of two or 

more fused aromatic rings forming planar structures with resonating pi bonds. They are classified as 

unsaturated hydrocarbons, yet tend to have low reactivity compared to other unsaturated 

hydrocarbons (alkenes and alkynes) as their pi electrons are stabilized through derealization of the pi 

orbitals (Brown et al., 1994). 

Of the many PAH compounds, the U.S. EPA has identified 16 PAH compounds as priority 

pollutants that are of environmental concern. Figure 2.1 shows the structure of the 16 PAH 

compounds. A summary of their physical and chemical properties is provided in Table 2.1. As can 

be seen from Table 2.1, some of these compounds have very low water solubility and are solid at 

most temperatures found in the environment. These compounds tend to have a moderate to low 

volatility that decreases with increasing molar mass (Brown et al., 1994). Furthermore, PAH 

compounds have a high adsorption tendency (due to their non-polar nature), and moderate to low 

biodegradability, which again is directly related to the molecular size and shape of the compounds. 

The solid-water partition coefficients of the 16 priority PAH pollutants are also given in Table 2.1. 

Because of these properties, PAH compounds tend to be relatively immobile and persistent in soil. 

The hydrophobic nature of these compounds lends to rapid partitioning onto particulate 

matter or tissue suggesting bioaccumulation potential (LaGrega et al., 1994). Some PAH compounds 

have been shown to be acutely toxic to aquatic organisms at concentrations ranging from 0.2 mg/L to 

10 mg/L, with acute toxicity increasing with increasing molecular weight to a point at which 

compound solubilities become too low to elicit a response (Neff, 1985). Table 2.2 lists the critical 

toxic (non-carcinogenic) effects that may result from oral exposure to select PAH compounds based 

on animal studies. Toxic responses from exposure to PAH compounds may include atrophy of the 

hematopoietic elements leading to progressive anemia and agranulocytosis (deficiency in white blood 

cells), shrinkage of lymphoid organs and lymphopenia, damage to epithelial cells, and reproductive 

disorders such as the destruction of the spermatogonia and resting spermatocytes in males and the 

primary oocytes in females (RAIS, 2004; IRIS, 2004). Metabolites of PAH compounds, which are 

more water soluble and reactive than their respective parent compounds, may bind to protein, DNA, 



www.manaraa.com

13 

and other macromolecules leading to cell damage, mutagenesis, or possible cancers of the stomach, 

lung, or skin (LaGrega et al., 1994). PAH compounds related to carcinogenicity tend to induce 

immunosuppression in laboratory animals, whereas noncarcinogenic PAHs do not (Dean et al., 1986). 

Benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, 

benzo(g,h,i)perylene, chrysene, dibenz(a,h)anthracene, and indeno(l,2,3-cd)pyrene have been 

identified by the U.S. EPA as probable human carcinogens. U.S. EPA drinking water standards and 

risk-based factors for corrective action based on toxicity and carcinogenicity are listed in Table 2.2. 

Of the 16 U.S. EPA priority PAH pollutants, benzo(a)pyrene is the only pollutant with an established 

maximum contaminant level (MCL) in drinking water. 

2.6 Environmental PAH Contamination 

PAH compounds at contaminated sites are likely to be found in complex mixtures that vary in 

composition with depth and distance from the source region. Novotny et al. (1981) studied the 

composition of several coal tar samples derived from coals of different geographical origin and 

determined that the major constituents were similar. Priddle and MacQuarrie (1994), however, 

compared the chemical composition of four creosote samples and one coal tar sample and found that 

they all varied significantly. Barbé et al. (1998) studied PAH concentration profiles with depth at a 

former coke plant and determined that lighter PAH compounds were typically present in shallower 

depths with heavier compounds (for example, benzo(a)pyrene) becoming increasingly predominant at 

greater depths in the unsaturated zone and into the saturated region of the subsurface. Delorme and 

Carlier (1998) studied several former manufactured gas plant sites in France and determined that in 

the majority of cases, silts and clays tend to be more polluted at these sites than the coarser sands. 

Furthermore, they determined that the presence of coal tars tended to decrease soil permeability, and 

that many PAH components in residues showed little mobility and were naturally stabilized in soil. 

In complex mixtures, PAH compounds may exhibit properties that differ from their pure 

phase properties. For example, Bayard et al. (1998) studied the influence of PAH compounds in 

aqueous and NAPL phases on naphthalene sorption to soil organic matter. Aqueous phase PAH 

compounds had no effect on naphthalene sorption due to their low solubilities and thereby 

insignificant competition. However, when coal tar was added to the soil system, soil sorption of 

naphthalene dropped significantly as the naphthalene preferably partitioned onto the coal tar NAPL in 

lieu of the natural organic matter. 
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In addition to changes in their sorptive behavior, it is expected that the solubility of PAHs in 

liquid mixtures of organic compounds will be much different from the solubilities expressed in their 

natural solid form. Raoult's law has been shown to adequately predict equilibrium PAH solubilities 

(within a factor of two to four) in complex organic mixtures such as diesel fuel, gasoline, coal tar, and 

creosote (Lee et al., 1992a; 1992b; Cline et al., 1991; King and Barker, 1999). Based on this, a 

comparison of the pure aqueous solubility of the 16 priority PAH compounds and the effective 

solubilities calculated with Raoult's law for two coal tar mixtures and a coal tar creosote are shown in 

Table 2.3. It is interesting to note that the effective solubility of a compound expressed in mixed 

liquid state may not necessarily be lower than its solubility in pure solid form (as in anthracene and 

chrysene). Effective solubilities of PAH compounds based upon Raoult's law have been used in 

numerical models to simulate steady-state PAH dissolution from complex mixtures of nonaqueous 

phase liquids (NAPLs) over time with some success (King and Barker, 1999). However, Priddle and 

MacQuarrie (1994) studied the efficacy of such models in columns of glass beads and determined that 

these models predicted the trends in dissolution but over-predicted aqueous concentrations by factors 

ranging from 1.5 to 8. These researchers suggested using a reduction factor as an extra model fitting 

parameter to account for the lower observed aqueous concentrations. Because of the uncertainty in 

PAH solubilities in the presence of complex mixtures and NAPLs, model prediction on the fate and 

transport of PAHs in the presence of NAPLs should be carefully evaluated. 

2.7 Abiotic Attenuation of PAH Compounds 

Abiotic processes that may influence the fate of hydrocarbons in the subsurface include 

dilution, dispersion, volatilization, hydrolysis, and sorption. Although dilution and dispersion may 

influence plume geometry and migration of PAHs in the environment, these processes do not result in 

attenuation of PAH compounds as they do not destroy, stabilize, or remove PAHs from a 

contaminated system. Volatilization losses in the vadose zone and at the capillary fringe of the 

subsurface environment may be one of the attenuation processes for low molecular weight PAH 

compounds such as naphthalene. Bioremediation studies conducted by Bossert and Bartha (1986) 

and Park et al. (1990) indicated that 2- and 3-ring PAH compounds may be lost from soil samples 

through volatilization. No significant volatilization losses were found for PAH compounds 

containing more than three benzene rings. An inverse correlation between the number of rings in 

PAHs and their volatilization losses is generally assumed. However, quantification of losses of PAHs 

by volatilization from the subsurface environment under field conditions is not available. 
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PAHs are chemically stable and are not hydrolyzed by reactive groups under subsurface 

environmental conditions. Therefore, hydrolysis does not contribute to the abiotic change in the 

PAHs (Radding et al., 1976; Howard et al., 1991). PAHs can be photodegraded but this effect is 

minimal in a subsurface environment (Sims and Overcash, 1983). 

Sorption of PAH compounds is an area of intense research. As indicated earlier in Table 2.1, 

sorption onto the organic matter and mineral surfaces of soils may be one of the major attenuation 

processes for PAH compounds in the subsurface. For example, the log Koc value for naphthalene, the 

most soluble of the 16 priority PAHs, is approximately two times larger than that of benzene. 

Although the Koc values may provide a basis for comparison, several researchers have shown that 

specific subsurface geosorbents such as natural organic matter (NOM), soot and mineral surfaces 

have very different affinities for PAH. In fact, the equilibrium partitioning coefficients may vary as 

much as several orders of magnitude in materials such as soot, NAPLs, bacterial biomass, mineral 

surfaces, recent amorphous NOM that is relatively more oxidized, and aged, increasingly condensed, 

highly microcrystalline, and relatively more reduced NOM (Xia and Ball, 2000; Chiou et al., 2000; 

Bayard et al., 2000; Huang and Weber, 1997; Leuking et al., 2000; Weber et al., 1998; Ghosh et al, 

2000; Young and Weber, 1995; Jonker and Smedes, 2000; Stringfellow and Alvarez-Cohen, 1999; 

Karapanagioti et al., 2000). Furthermore, the location of sorption sites may have an impact on the 

desorption of PAH compounds in the aqueous-soil environment as diffusion from micropores and 

intraorganic matter may strongly influence contaminant mass transfer to the aqueous phase (Luthy et 

al., 1997; Brusseau et al., 1991). For these reasons, PAH sorption exhibits strong isotherm 

nonlinearities and hysteresis that become more prominent with the age of contamination (Hatzinger 

and Alexander, 1995; MacLeod and Semple, 2000; Carmichael et al., 1997). These nonlinearities 

lend to abiotic stabilization of PAHs in the environment and are of benefit to natural attenuation 

efforts. Consequently, the use of linear and reversible sorption models with lumped distribution 

coefficients may not be suitable for modeling sorption of individual PAHs to the subsurface media. 

2.8 Biological Attenuation of PAH Compounds 

Biological action may result in the complete conversion of PAH compounds to innocuous 

byproducts in the environment. As such, it may be the most important attenuation mechanism for 

displaying natural attenuation at PAH-contaminated sites (EPA, 1999). PAH compounds are 

ubiquitous in the environment at low concentrations, thus the presence of organisms capable of 

degrading these compounds may be ubiquitous as well. Padmanabhan et al. (2003) identified 
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naphthalene-degrading Acinetobacter spp., Variovorax spp., and Pseudomonas spp. in 

uncontaminated soils from the Agricultural Experimental Station in Ithaca, New York. Monna et al. 

(1993) isolated Terrabacter sp. strain DBF63 on fluorene from uncontaminated eastern Japanese 

soils. Daane et al. (2001) identified Paenibacillus naphthalenovorans SA-N1 as a degrader of 

naphthalene in uncontaminated plant root rhizosphere soils from Marine Station Lewes, Delaware. 

Eriksson et al. (2003) identified two Acidovorax spp. associated with the degradation of a PAH 

mixture in laboratory incubations with uncontaminated arctic soil from Vancouver, Canada. The 

ubiquity of PAH-degrading organisms in the environment lends strong support to bioattenuation 

potential of PAH-contaminated sites. Several researchers have even noted that PAHs may form the 

basis of complex food webs in polluted systems (Ghiorse et al., 1995; Carman et al, 1995; 

Langworthy et al., 1998). 

2.8.1 Aerobic PAH biodégradation 

Many bacterial, fungal and algal strains have been shown to biodegrade PAHs pollutants in 

laboratory incubations with contaminated soils and sediments. In several studies, 2- to 3-ring PAH 

compounds were readily removed by microorganisms as a sole source of carbon and energy 

(Heitkamp and Cerniglia 1989; Mueller et al., 1989; Weissenfels et al., 1990; Davis and Evans, 1964; 

Dean-Raymond and Bartha, 1975). Park et al. (1990) showed that the mineralization of 2-ring PAHs 

in sandy soils was extensive with half-lives of approximately two days. In comparison, the half-lives 

for the 3-ring PAHs anthracene and phenanthrene were 16 and 134 days, respectively. The work of 

Heitkamp and Cerniglia (1987) showed similar results for PAH degradation in sediment/water 

microcosms. McGinnis et al. (1988) conducted laboratory treatability studies on creosote-

contaminated soils from wood treatment sites and found that PAHs with two rings generally exhibited 

half-lives of less than 10 days and PAHs with three rings had half-lives of less than 100 days. 4-, 5-, 

and 6-ring PAHs tend to be recalcitrant with reported half-lives greater than 200 days. However, 

researchers have characterized microorganisms capable of using 4-ring PAHs as their sole carbon and 

energy sources from contaminated soils (Mueller et al., 1990; Walter et al., 1991; Weissenfels et al., 

1991). The half-lives and the aerobic degradation rates of the 16 U.S. EPA Priority PAH Pollutants 

in situ and in laboratory incubations with contaminated soils and sediments are summarized in Table 

2.4. The half-lives and first-order degradation rates presented are only representative and should be 

used with care as the estimated degradation rates in these studies may be different from the 

environmental conditions (e.g., electron acceptors, nutrient, etc.) present at a given site. 
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A partial list of PAH-degrading microorganisms (bacteria, algae, and fungi) that have been 

isolated from contaminated soils and sediments is presented in Table 2.5. In general, it has been 

observed that an organism capable of degrading a higher-ring PAH compound has the ability to 

degrade PAHs with fewer rings. However, microbial mineralization of PAHs with four or more rings 

has generally been reported to occur via cometabolism (Bouchez et al., 1995; Ye et al., 1996; Aitken 

et al., 1998). This cometabolic process may be stimulated by the presence of lower molecular weight 

PAH compounds or their intermediates of biodégradation such as salicylate (Keck et al, 1989; Kanaly 

et al., 1997; Chen and Aitken, 1999). At PAH-contaminated sites, there is no clear indication of how 

the presence of low molecular weight PAHs influence the biodégradation of higher molecular weight 

PAHs or vice versa. 

Aerobic metabolism of PAH compounds by bacteria and some green algae commonly 

involves the initial oxidation of an aromatic ring by dioxygenases such as naphthalene dioxygenase or 

phenanthrene dioxygenase to produce c/s-dihydrodiols (Wilson et al., 1999; Laurie and Lloyd-Jones, 

2000; Dean-Ross and Cerniglia, 1996; Heitkamp et al., 1988b; Walter et al., 1991 ; Weissenfels et al., 

1991). Commonly, these dihydroxylated intermediates are further metabolized through an ortho- or 

meta-cleavage type pathway leading to protocatechuates and catechols, which are subsequently 

converted to tricarboxylic acid cycle intermediates. Initial activation of PAH compounds by 

monooxygenases of many bacteria may result in production of /razîs-dihydrodiols and phenols. 

Cytochrome P450 monooxygenases of fungi and some bacteria also produce arene oxides which can 

be subsequently converted by the enzyme epoxide hydrolase to a zrans-dihydrodiol or non-

ezymatically to phenols. The lignin-degrading enzymes of white-rot fungi such as lignin peroxidase 

or manganese peroxidase may produce quinones which can be subsequently mineralized by the 

fungus or commensal bacteria (Prince and Drake, 1999). Table 2.5 lists the primary sites of aerobic 

enzymatic attack on several PAH compounds. 

Following isolation and characterization of several PAH-degrading bacteria from creosote 

contaminated soils in the United States, Norway, and Germany, Mueller et al. (1997) determined that 

PAH-degrading capabilities appeared to be associated with members of certain taxa such as 

Sphingomonas spp. and Burkholderia spp., independent the origin of the soils from which the bacteria 

were isolated. Later, it was noted by Bastiens et al. (2000) that the use of different isolation 

techniques influenced the selective growth of PAH-degrading bacteria. These researchers noted that 

relatively slow growing gram positive bacteria such as Mycobacterium spp. were more likely to be 

isolated with PAH-sorbing carriers whereas more opportunistic bacteria such as Pseudomonas spp., 

Sphingomonas spp., and Burkholderia spp. are more likely to be identified using liquid media. In a 



www.manaraa.com

18 

later study, Johnsen et al. (2002) noted that PAH mineralization in soils and sediments is dominated 

by bacteria that belong to a limited number of taxonomic groups including Nocardioforms, 

Sphingomonas, Burkholderia, Pseudomonas, and Mycobacterium. A review of several studies does 

reveal phylotypic clustering of PAH-degrading bacteria isolated from soils and sediments globally 

(see Table 2.6). This is interesting because most known specific genetic elements related to PAH 

degradation (such as those exhibiting classical nah-like {nah, ndo,pah, and dox) sequences or phn-

sequences) are plasmidborne and thus transposable. This may suggest that other phenotypic 

characteristics such as cell hydrophobicity, the ability to conjugate, and/or the ability to produce 

biosurfactants may be equally important to displaying the PAH-degrading phenotype as the 

availability of specific genetic elements the environment. However, it may also be that specific 

phenotypic characteristics lead to cultivability, by which most PAH-degrading bacteria are 

characterized. Culture techniques may not fully capture the suite of organisms capable of degrading 

PAH compounds in the environment. The use of emerging molecular techniques may play an 

important role in identifying new PAH-degrading bacteria (and potentially novel catabolic genetic 

elements) that have resisted cultivation to date. 

2.8.2 Anaerobic PAH Biodégradation 

Most works on PAH biodégradation have focused on aerobic conditions. However, 

bioenergetic growth modeling of heterotrophic metabolism of PAH compounds shows potential for 

several compounds such as naphthalene, anthracene, phenanthrene, and pyrene to mineralize using 

nitrate, ferric iron, manganese (IV), sulfate, and carbon dioxide as terminal electron acceptors 

(McFarland and Sims, 1991). Large microbial growth yields were predicted for the reduction of free 

metal species during PAH oxidation, and suggest the ability to degrade PAH compounds in these 

redox environments may even pose a selective advantage. There also exists strong field evidence that 

the anaerobic biodégradation of PAH compounds may be significant for attenuation of at least low 

molecular weight PAH compounds. Many PAH-polluted sites exhibit changes in aqueous 

geochemistry relative to nearby pristine conditions commonly associated with increased microbial 

activity and anaerobic biodégradation processes (Nielsen and Christensen, 1994; EPRI, 1996; King et 

al., 1999; Campbell et al., 1996; Landmeyer et al., 1998; Ong et al., 2001). 

Biodégradation of low-ring PAHs under anoxic and anaerobic conditions has been observed 

in laboratory-scale incubations of contaminated harbor, estuarine, and aquifer sediments. Milhelcic 

and Luthy (1988a) observed naphthalene and acenaphthalene mineralization in soil-water laboratory 

incubations under nitrate-reducing conditions after a lag phase of approximately 10 days and 15-20 
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days, respectively. In a subsequent study, these researchers determined that the lag phase was a result 

of the time it took for a small population of organisms to attain sufficient densities to exhibit 

detectable PAH degradation (Milhelcic and Luthy, 1988b). McNally et al. (1998) observed 

degradation of anthracene, phenanthrene, and pyrene to non-detectable levels within four days under 

strict nitrate-reducing conditions by three pseudomonad strains isolated from contrasting 

environments. More recently, Rockne et al. (2000) demonstrated mineralization of naphthalene under 

nitrate-reducing conditions by three pure culture isolates from contaminated Eagle Harbor (Puget 

Sound) sediments. These works support growing evidence that the fate of PAH compounds in 

contaminated systems may be strongly influenced by nitrate-reduction. All PAH-degrading, nitrate-

reducing bacteria that have been identified belong to the and y-Proteobacteria, as shown in Table 

2.6. 

Although large microbial growth yields were predicted for PAH degradation coupled to 

metal-reduction, reports of PAH-degradation under metal-reducing conditions are rare. Nielsen and 

Christensen (1994) measured the degradation of select PAH compounds in a landfill leachate plume 

of varying aqueous geochemical environments using field measurements and laboratory incubations 

with site sediments. These researchers reported that the degradation of PAH compounds were limited 

to aerobic and iron (Ill)-reducing conditions. Andersen and Lovley (1999) observed naphthalene 

mineralization under iron (IH)-reducing conditions in sediments from a petroleum-contaminated 

aquifer in Bemidji, Minnesota, but not in sediments from the Fe(III)-reducing zone of other 

petroleum-contaminated aquifers studied. The rate of naphthalene mineralization correlated positively 

to the presence of iron (III) in aquifer sediments and to benzene, toluene, and acetate mineralization 

under iron (Ill)-reducing conditions. These researchers noted that uncontaminated sediments at the 

Bemidji site adapted to anaerobic benzene degradation merely by the addition of benzene, whereas 

sediments of the other petroleum contaminated aquifers did not. This indicated that Bemidji 

sediments naturally contained Fe(III) reducers capable of degradation of unsubstituted aromatic 

hydrocarbons. In a later study, Rooney-Varga et al. (1999) observed significant enrichment in 

bacteria of the Geobacter cluster, specifically of the family Geobacteraceae, in Fe(III)-reducing 

regions of the aquifer. These researchers noted in microcosms established with contaminated site 

sediments the enrichment of Geobacter spp., a genus within the ô-Proteobacteria associated with 

bacteria capable of coupling of the complete oxidation of organic compounds to the reduction of iron 

and other metals (Lovley et al., 1993). 

Both naphthalene and phenanthrene have been shown to mineralize under sulfate-reducing 

conditions without a detectible lag period in heavily contaminated sediments taken from San Diego 
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Bay, San Diego, California (Coates et al., 1996; Coates et al., 1997). Sulfate reduction was necessary 

for PAH oxidation in these sediments whereas sediments from less contaminated regions of the 

harbor were not able to mineralize naphthalene or phenanthrene. Bedessem et al. (1997) observed 

extensive naphthalene mineralization (66% in 13 days) under sulfate-reducing conditions in 

laboratory microcosms established from sediments of two coal tar-impacted aquifers. These 

researchers identified naphthenol as a potential metabolic intermediate based on GC/MS analyses of 

stabilized naphthalene-degrading consortia. Zhang and Young (1997) showed that sediments 

collected from Arthur Kill in the New York/New Jersey Harbor also displayed mineralization of 

naphthalene and phenanthrene under sulfidogenic conditions, but with an initial lag period of 120 to 

150 days. Subsequent studies with the same isolates revealed no apparent lag and rapid 

mineralization. HPLC and GC/MS analysis of the byproducts of degradation following incubation 

with [13C]bicarbonate indicated that the reaction was initiated by a carboxylation step to yield 2-

naphthoic acid or phenanthrene carboxylic acid, respectfully. These results were supported by the 

work of Meckenstock et al. (2000), who identified carboxylation as the initial step in the 

mineralization of naphthalene in sulfate-reducing isolates from contaminated aquifer soils in 

Stuttgart, Germany. 

Galushko et al. (1999) isolated several sulfate-reducing bacteria from highly contaminated 

marine sediments in Germany that grew on naphthalene as the only organic carbon source. These 

researchers characterized one strain (strain NaphS2) phylogenetically and realized a close affiliation 

to all known monoaromatic hydrocarbon-degrading sulfate-reducing bacteria of the S-Proteobacteria. 

Hayes and Lovley (2002) evaluated 16S rDNA sequences of bacteria associated with naphthalene 

mineralization under sulfate-reducing conditions enriched from contaminated San Diego Bay 

sediments and identified several organisms of the S-Proteobacteria, closely related strain NaphS2. 

Analysis of 16S rDNA sequences in San Diego Bay sediments showed that 6-8% of the sequences 

from contaminated sites were closely related to the 16S rDNA sequence of NaphS2, whereas no 

sequences of the NaphS2 phylotype were recovered from nearby uncontaminated sediments. PAH-

degrading sediments originating from Island End River (Boston, MA), Tampa Bay (Florida) and 

Liepaja Harbor (Latvia) were also observed to contain 16S rDNA sequences belonging to the NaphS2 

phylotype based on amplification with a PCR primer designed on the phylotypic sequence of 

NaphS2-like bacteria, suggesting these bacteria may play an important role in naphthalene 

degradation under sulfate-reducing conditions in contaminated harbor sediments. 
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2.8.3 Bioavailability of PAHs 

Bioavailability of the strongly hydrophobic PAH compounds is of concern where conversion 

of environmental PAH pollution to innocuous byproducts is the remedial goal. Soils that have been 

contaminated with PAHs for a long time (aged soils) typically hold less bioavailable compounds than 

soils that are recently contaminated (Hatzinger and Alexander, 1995; Carmichael et al., 1997; 

Erickson et al., 1993). However, in some instances, PAH compounds sorbed to soil or sediment 

surfaces may be more bioavailable as they may be brought into closer proximity to microorganisms 

that are similarly sorbed on the surfaces (Laor et al., 1999; Poeton et al., 1999). Some soil organisms 

have been shown to be capable of producing biosurfactants that may enhance mass transfer rates from 

the sorbed or NAPL phases, resulting in different bioavailability as compared to microorganisms that 

rely strictly on physical-chemical mass transfer from these phases (Stucki and Alexander, 1987; 

Deschênes et al., 1996; Guerin and Boyd, 1992; Aitken et al., 1998; Burd and Ward, 1996; Daghler et 

al., 1997; Voparil and Mayer, 2000; Mata-Sandoval et al., 2000). The overall influence these 

biosurfactant producing organisms have on the rate and extent of biodégradation in the subsurface 

remains to be determined (Bouchez et al., 1995; Volkering et al, 1992; Volkering et al., 1993; Wick et 

al., 2001; Aitken et al., 1998; Guerin and Boyd, 1992). At the present time, there are only a few 

empirical approaches to estimate the bioavailability or the amount of PAH that is available for 

biodégradation in a given soil or sediment (Joo, 2004). 

2.8.4 Outstanding issues 

Several gaps remain in the understanding of biodégradation of PAH compounds in 

contaminated systems. For natural attenuation to become a viable remedial option, a better 

understanding of the capacity of indigenous microbial consortia to transform PAHs into innocuous 

byproducts must be realized. Current knowledge of the biodiversity of PAH contaminated soils and 

sediments is largely derived from deterministic approaches, relying on the cultivability of 

microorganisms capable of degrading PAH compounds. These culture-dependent techniques may 

allow the study of only a small fraction of the biodiversity present in natural systems (Amann et al., 

1995; Atlas and Bartha, 1992). For instance, recent evidence has suggested that PAH-degrading 

isolates are sensitive to simple selective pressures applied during cultivation such as inclusion or lack 

of solid surfaces or nonaqueous phase liquids (NAPLs) in the cultivation procedures (Bastiaens et al., 

2000; Friedrich et al., 2000; Colores et al., 2000; Grosser et al., 2000). Current information regarding 

the genotypic and phylotypic diversity of PAH-degrading organisms may be biased by these 
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limitations of cultivability, and the natural metabolic activity of PAH-contaminated systems may be 

underestimated (Ahn et al., 1999; Lloyd-Jones et al., 1999; Widada et al., 2002). Future efforts to 

expand the breadth of our understanding of the genotypic and phylotypic bases for PAH-degradation 

should hinge around techniques that do not rely on cultivation. 

2.9 Documenting Intrinsic Degradation Potential: Classical Approaches 

Classical approaches to documenting natural attenuation at contaminated sites include 

evidencing long-term reduction of contaminant concentrations at appropriate monitoring locations 

with statistical techniques, plume-scale modeling based on measured site hydrological, soil physical-

chemical, and aqueous geochemical properties, and screening site soils and sediments in laboratory-

scale bioassays for biodégradation of pollutants of interest (EPRI, 1996; King et al., 1999; Davis et 

al., 1999). Although these approaches have been successful for documenting monoaromatic and 

aliphatic hydrocarbon biodégradation at fuel release sites, their use at PAH contaminated sites, where 

environmentally relevant concentrations may approach detection limits and significant variability in 

measured concentrations are common, may result in much longer-term monitoring efforts to deal with 

uncertainty in the data. 

Plume-scale modeling of complex mixed contaminant plumes typically associated with PAH 

contaminated sites may lead to gross misinterpretation of site-level data when models are not applied 

with careful evaluation of the underlying assumptions. Environmental PAH contamination often 

involves complex waste mixtures, diverse and dynamic microbial consortia, and a broad and 

heterogeneous spatial distribution of geochemical environments often exhibiting localized micro-

anaerobic conditions that become more predominant where the macro-scale influx of dissolved 

oxygen decreases. The consumption of any particular pollutant(s) emanating from a chemically 

complex mixed source may elicit a particular geochemical response(s). Monitoring only select 

"representative" groundwater pollutants emanating from a complex coal-tar source region (usually 

only 5-20% of the pollutants) may lead to the false impression that an observed reduction in terminal 

electron accepting compounds (TEAs) are directly and completely attributable to reduction in specific 

pollutants (U.S. EPA, 1999). Models of natural attenuation based on approaches that rely on mass 

balances between "biodegraded" pollutants and reduction in terminal electron acceptors exhibited in 

situ such as the instantaneous reaction approach should be carefully evaluated when applied to 

specific hydrocarbon compounds, especially in the complex waste mixtures emanating from 

environmental PAH contamination. 
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Although laboratory-scale incubations with contaminated site media may provide linkage 

between biodégradation of PAH compounds and the use of TEAs, these studies typically result in 

altered (enriched) microbial community structures that may not accurately reflect in-situ conditions 

(Amann et al., 1995). Furthermore, temporal heterogeneity in the aqueous geochemistry and 

microbial community structure at many PAH-contaminated sites may complicate data interpretation 

for modeling and monitoring efforts leading to additional difficulty when investigating natural 

attenuation as a potential remedial mechanism (Langworthy et al, 1998). Therefore a gap exists 

between interpreting microcosm study results as related to field-scale processes, hindering modeling 

effectiveness. Displaying MNA at PAH-contaminated sites will require much more effort (increased 

number of sampling events over a longer monitoring time frame, increased density of the monitoring 

well network both in numbers of wells and shorter distances between wells, and provision of 

conclusive tertiary lines of evidence) than at classical fuel-release sites to attain regulatory approval. 

2.10 Documenting Intrinsic Degradation Potential: Emerging Molecular Approaches 

The advent of emerging molecular techniques have made possible the identification and 

enumeration of complex microbial ecologies without cultivation. These technologies may be 

particularly useful in site characterizations and monitoring programs for documenting intrinsic 

microbial activity on PAH compounds, and hold promise for displaying sustained remediation 

potential as well as reducing monitoring events and time frames. Molecular techniques may be 

integrated into MNA approaches by monitoring for the presence and activity of organisms and 

catabolic genes related to the degradation of PAH pollutants at contaminated sites as evidenced in 

laboratory incubations with site soils or sediments, providing linkage between the two scales 

(Fleming et al., 1993; Zhou et al., 1997; Stapleton et al., 2000; Mesarch et al., 2000; Wilson et al., 

1999; Laurie and Lloyd-Jones, 2000). The information gained may lead to better decision making 

regarding the use of MNA as a remedial mechanism, provide a much more accurate assessment of 

sustained intrinsic bioremediation potential, and aid in evaluating modeling assumptions. Typical 

emerging molecular techniques include fluorescence in situ hybridization (FISH), phospholipids 

ester-linked fatty acid (PLFA) profiles, terminal restriction fragment length polymorphisms (T-

RFLP), gene-probing, and ribosomal RNA gene clone libraries (Kuske et al., 1997; Barns et al., 1999; 

Dunbar et al., 2000; Ritchie et al. 2000; Liesack and Stackebrandt, 1992; Weiss et al., 1996; 

Hugenholtz et al., 1998a, Hugenholtz et al., 1998b; Dojka et al., 2000; Dunbar et al., 1999). The 
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following describes how emerging molecular techniques are providing new and powerful information 

valuable to studies of intrinsic remediation potential. 

2.10.1 Perturbation in Intrinsic Microbial Community Structure 

Applied to contaminated sites, molecular microbiological techniques may be useful for 

identifying perturbations in contaminated aquifer community structures as compared to nearby 

pristine aquifer community structures, leading to identification of specific microbial taxa active in the 

degradation of contaminants of interest. (Dojka et al., 1998; Smit et al., 1997; MacNaughton et al., 

1999; Rooney-Varga et al., 1999; Shi et al., 1999). Alternatively, these techniques may be applied to 

enrichment cultures with contaminated soils or sediments to infer degrading species. The presence of 

microorganisms associated with enrichment in PAH-degrading enrichment cultures in situ may imply 

intrinsic remediation potential. The primary goal of these studies is to show a phylotypic response to 

anthropogenic contamination and to link that response to the degradation of pollutants of interest. 

These types of techniques have been applied to many monoaromatic and chlorinated 

hydrocarbon contaminated sites. Zarda et al. (1998) determined that increased numbers of soil 

bacteria, predominantly of the S-Proteobacteria subdivision (of which many are sulfate reducers), 

and increased whole-cell hybridization rate (compared to DAPI counts) were associated with 

increased contaminant concentrations in a mono-aromatic hydrocarbon-contaminated aquifer. Since 

whole-cell hybridization rates are linked to cellular rRNA content, these results suggested that the 

mono-aromatic compounds were being used as growth substrates under sulfate-reducing conditions. 

Rôling et al. (2001) observed changes in the denaturing gradient gel electrophoresis (DGGE) profiles 

of a landfill leachate plume that corresponded to changes in the redox environment. These 

researchers concluded that Geobacter spp. and iron reducing conditions deserved more attention in 

future natural attenuation studies. Pickup et al. (2001) determined that high phenol concentrations in 

a tar-acid polluted aquifer corresponded to a significant decline in bacterial populations. Although 

there was a high level of microbial diversity between sampling locations as determined by thermal 

gradient gel electrophoresis (TGGE), these researchers observed no significant trends between 

community structure and sampling levels, boreholes, or phenol concentration. Fang and Barcelona 

(1998) observed considerable microbial diversity throughout a jet fuel contaminated aquifer by 

analyzing phospholipids ester-linked fatty acids (PLFA) of aquifer materials. Hydrocarbon-

contaminated anaerobic environments contained higher biomass and diversity than non-contaminated 

aerobic regions, suggesting anaerobic biodégradation of the jet fuel hydrocarbons. Richardson et al. 
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(2002) demonstrated that the combined the use of clone libraries, T-RFLP, FISH, and quantitative 

PGR can overcome individual limitations of each technique, providing a powerful tool for 

characterizing complex microbial communities as well as tracking and monitoring specific microbial 

species in environmental systems. Using a combination of these tools, they identified 

Dehalococcoides sp. as an important element of enrichment communities that dechlorinate TCE 

completely to ethane. 

Application of these methods to PAH-contaminated soils and sediments is limited. One 

noteworthy publication is that of Eriksson et al. (2003) who studied the degradation of 11 two- to 

five-ring PAHs at low temperatures under aerobic and nitrate-reducing conditions in enrichment 

cultures from four northern and arctic soils exposed to diesel fuel, polychlorinated biphenyl, coal-tar, 

or creosote-PAH. These researchers noted that PAH degradation was severely limited by low 

temperatures in aerobic incubations whereas degradation under nitrate-reducing conditions was not 

substantially affected by a change in temperature from 20°C to 7°C. Using ribosomal intergenic 

spacer analysis, they identified microbes of the genera Acidovorax, Bordetella, Pseudomonas, 

Sphingomonas, and Variovorax in both their aerobic and nitrate-reducing enrichment cultures 

regardless of soil or sediment source. 

2.10.2 Probing for Catabolic Genetic Elements 

Gene-probing may also provide useful information regarding the potential for intrinsic PAH 

biodégradation in contaminated environmental systems. The use of gene probing requires 

identification of specific genetic sequences coding for production of catabolic enzymes related to the 

degradation of pollutants of interest. Several gene probes related to PAH degradation have been 

identified, some of which are summarized in Table 2.7. 

The identification of gene probes related to PAH degradation has led to their application in 

PAH-contaminated systems. Langworthy et al. (1998) studied the genotypic and phenotypic 

responses of a riverine microbial community to PAH contamination in sediments from six locations 

along the Little Scioto River near Marion, Ohio. PLFA profiles were used to characterize the 

microbial community structure and nucleic acid analysis with autoradiographic techniques was used 

to quantity the frequency of the degradative genes (alkB (alkane hydroxylase), nahA (naphthalene 

dioxygenase), nahH (2,3-catechol dioxygenase), and todCl!C2 (toluene dioxygenase)). These 

researchers observed mineralization of [UL-14C] naphthalene, [UL-14C]anthracene, [UL-14C]fluorene, 

and [9-14C]phenanthrene in laboratory incubations with heavily exposed (>100 ng g"1 dry sediment) 



www.manaraa.com

26 

and minimally exposed (<2 (ig g1 dry sediment) sediments (Langworthy et al., 2002). [7-

14C]benzo[a]pyrene mineralization was detected only in heavily exposed sediments. PAH 

mineralization in exposed sediments was more extensive and initiated with shorter lag phases in all 

cases. In situ, the total microbial biomass was highest in sediments of intermediate exposure, while 

the most contaminated sediments held similar microbial biomass as uncontaminated sediments. The 

community structure of uncontaminated sediments was dominated by gram positive bacteria, 

anaerobic gram negative bacteria, and Bacillus-type organisms. Chronic exposure to PAHs resulted 

in enrichment of aerobic gram negative bacteria and heterotrophic eukaryotes, suggesting 

development of a food web whereby aerobic gram negative bacteria grew on PAH compounds and 

served as a food source for predatory microeukaryotes. Seasonal variations were determined to be 

just as influential on microbial community structure as exposure history, indicating that these types of 

environmental stresses should be taken into consideration when attempting to identify alteration in the 

microbial community structure due to anthropogenic contamination when evaluating intrinsic 

bioremediation. All degradative gene sequences were identified in most sediments regardless of 

exposure history, but nahA and alkB gene sequences occurred with significantly greater frequency in 

contaminated sediments than in ambient sediments. These results clearly showed a response in the 

microbial community structure to increased exposure to PAH pollutants and strongly supported 

intrinsic bioremediation activity. 

Ringleberg et al. (2001) combined gene probing and PLFA analysis to investigate genotypic 

changes in the microbial community structure during successive biodégradation of specific PAH 

compounds in bioslurry reactors to arrive at relationships that may be useful for evaluating in situ 

microbial community structures for PAH-degrading potential. It was observed that biodégradation of 

3-ring PAH moieties correlated to the growth of gram positive bacteria (i.e. Rhodococcus spp.) and 

increases in naphthalene dioxygenase, biphenyl dioxygenase, and catechol 2,3-dioxygenase gene 

copy numbers. Biodégradation of four ring PAH moieties was observed to correlate to the growth of 

gram negative bacteria such as Alcaligenes and Pseudomonas spp., but not to an increase in the copy 

number of any genetic elements of interest (toluene dioxygenase, toluene-4-monoxygenase, alkane 

hydroxylase, biphenyl dioxygenase, catechol 2,3-dioxygenase, naphthalene dioxygenase, or 2-

nitrotoluene dioxygenase). These researchers speculated that such relationships may be useful for 

probing in situ microbial communities at contaminated sites reducing reliance on costly and time 

consuming laboratory treatability studies. 

Although gene probing may eventually become a powerful tool for characterizing natural 

microbial communities for PAH-degrading activity, the current extent of available genetic markers 
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may not be adequate for completely describing microbial metabolic capabilities (Widada et al., 2002). 

For instance, Berardesco et al. (1998) isolated 432 phenanthrene-degrading bacteria from intertidal 

sediments in the Boston Harbor including several Pseudomonas spp., Vibrio spp., Burkholderia spp., 

Sphingomonas spp., Flavobacter-like bacteria, and Mycobacterium spp. Less than 2.5% of the 

isolates hybridized to the nahAaAb (naphthalene dioxygenase) gene probe and 11.7% to the pY3-E16 

gene probe encoding the upper pathway for catabolism of naphthalene, phenanthrene, and fluorene 

(Yang et al., 1994). These researchers concluded that the predominant genes that encode 

phenanthrene degradation in the diverse phenanthrene-degrading bacteria of the Boston Harbor 

sediments were not well characterized. This is supported by the work of Laurie and Lloyd-Jones 

(1999), who identifiedphnAc (phenanthrene dioxygenase) as a divergent gene cluster from classical 

MtifA-like genes for PAH degradation. In a later study these researchers noted that 53% of 79 

naphthalene- and/or phenanthrene-degrading isolates from contaminated New Zealand soils failed to 

hybridize to nahAc (naphthalene dioxygenase), phnAc (phenanthrene dioxygenase), or GST 

(glutathione S-transferase) (Lloyd-Jones et al., 1999). Only a small fraction of phenanthrene-

degrading bacteria hybridized to nahAc, and phnAc failed to hybridize to any naphthalene- or 

phenanthrene-degrading bacteria. These researchers hypothesized that the probing errors of this work 

were either due to the use of specific probes that have low sequence homology to similar catabolic 

genes of the unrepresented bacteria, or alternatively to uncharacterized genes for PAH catabolism. 

2.10.3 Combined Molecular Microbiological and Isotopic Techniques 

Several researchers are expanding the utility of molecular microbiological approaches by 

combining them with isotopic techniques to determine structure-function relationships in 

contaminated soils and sediments. Hansen et al. (1999) used a coupled PLFA and isotope tracer 

analysis to track 13C enrichment in the phospholipids fatty acids of organisms incubated in soils with 

13C-toluene. These researchers were able to show 85% homology between l3C-enriched PLFAs and 

those of a toluene degrading gram positive bacterium (strain YT2) isolated from the same soil. Pelz 

et al. (2001a) used similar l3C-PLFA techniques to identify the in situ activity of Azoarcus spp. on 

toluene degradation under denitrifying conditions in petroleum hydrocarbon contaminated sediments 

from Studen, Switzerland. In a later study, these researchers identified Desulfobacter spp. active in 

growth on 13C toluene based on 13C-PLFA profiles of aquifer microcosms of the same site following 

incubation under sulfate-reducing conditions. An enrichment of organisms of the family 

Desulfobacteriaceae in the in situ community structure of the same contaminated sediments 
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exhibiting sulfate-reducing activity based on FISH supported their results. Johnsen et al. (2002) 

linked Sphingomonas spp. and other /3-Proteobacteria to the degradation of phenanthrene in soils of a 

former asphalt production plant and a shipyard in Denmark by analyzing 13C-labeled cell lipids 

following incubation with [l3C]phenanthrene. These researchers were also able to identify 

actinomycetes active in the degradation of phenanthrene in uncontaminated road-side soils, but did 

not recover 18:2co6,9 PLFA from any soils tested suggesting that fungi did not assimilate the 

[13C]phenanthrene. 13C-PLFA techniques have also been used to identify styrene-degrading 

microorganisms in biofilters treating waste gases and phospholipids compositional changes of 

toluene-degrading bacteria in response to exposure to toluene (Alexandrina et al., 2001 ; Fang et al., 

2000). 

Radajewski and associates (2000) developed stable isotope probing (SIP) techniques to assess 

the diversity and population dynamics of methane oxidizing bacteria in the environment. After 

incubating environmental samples with l3C-methanol, the community DNA was extracted and the 

13C-DNA fractionated from the 12C-DNA by ultracentrifugation in cesium chloride/ethidium bromide 

density gradients. The 13C-DNA fractions were used as templates for PGR with primers specific for 

bacterial, archaeal, and eukaryal small-subunit rRNA genes as well as mxaF. The amplified products 

were cloned, sequenced, and analyzed phylogenetically, revealing that the methylotrophs in their soils 

were confined to the a-Proteobacteria and Acetobacterium divisions, and were most closely related 

to genera that are rarely associated with methanol utilization. Padmanabhan et al. (2003) used l3C-

naphthalene and the SIP technique on uncontaminated soils from the Agricultural Research Station in 

Ithaca, New York and identified naphthalene-degrading Acinetobacter spp., Variovorax spp., and 

Pseudomonas spp. 

In a select number of studies, researchers have been able to visually and quantitatively link 

the functional activity of microorganisms to their phylogenetic identity by incubating environmental 

samples with radioisotopic substrates and combining fluorescence in situ hybridizations with 

microautoradiography (known by several acronyms including MAR-FISH, MICRO-FISH, FISH-

MAR, FISH-MARG, and STARFISH, but referred to as MICRO-FISH herein). By combining these 

techniques, these researchers can simultaneously visualize the incorporation of radioisotope into 

cellular mass and identify phylogenetic identity of organisms growing on the radioisotopic substrate. 

MICRO-FISH is a natural extension of microautoradiograghy-epifluorescence microscopy (MAR-

EM), which incorporated the use of acridine orange direct counts or fluorescent antibodies for 

determining the substrate uptake and microbial growth in natural waters (Fliermans and Schmidt, 

1975; Fuhrman and Azam, 1982; Meyer-Reil, 1978; Tabor and Neihof, 1982; Tabor and Neihof, 
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1984). More recently, it has been used in a similar fashion to visualize uptake patterns of simple 

organic and inorganic substrates into activated sludge, oceanic waters, and more recently, sewer 

biofilms (Nielsen et al., 1999; Lee et al., 1999; Ouverney and Fuhrman, 1999; Cottrell and Kirchman, 

2000; Ito et al., 2002). Application of MICRO-FISH to identify organisms active in the uptake of 

xenobiotic compounds is limited to Yang et al. (2003), who used a coculture of Pseudomonas putida 

B2 and Sphingomonas stygia to demonstrate successful identification of microorganisms degrading o-

nitrophenol. 

Although combined isotopic and molecular approaches hold promise for enhancing site 

characterizations and monitored natural attenuation efforts, each technique has its limitations. For 

instance, stable carbon isotope-PLFA analyses may be limited in environments where several 

uncultivated organisms exist, potentially resulting in composite profiles unlike that of any single 

organism. The SIP technique has the distinct advantage of an ability to directly sequence the small 

subunit 13C-rDNA of hydrocarbon-degrading bacteria to be assigned to a specific taxonomic clade. 

However, growth on sparingly soluble substrates may be limited by bioavailability. This may result 

in poor growth rates and low cell production inhibiting DNA-based stable isotope probing, which 

requires cell turn-over for new DNA to be constructed. Other methods such as RNA SIP and 

MICRO-FISH that do not require growth, but only maintenance of cell parts with isotopic carbon 

may be more appropriate to the study of structure-function relationships in HOC-contaminated 

systems. MICRO-FISH techniques may be hampered in cases where there exists limited information 

regarding the microbial community structure a-priori. All of the combined molecular microbiological 

and isotopic approaches rely on anabolism of the isotopic compound, and will fail to yield results 

where cometabolic or strict catabolic transformations take place. Labeling position on the isotopic 

compound may be of importance where dead-end metabolites are formed or where complete 

degradation requires several different species of microorganisms (e.g. initial attack by eukaryotic 

organisms followed by complete mineralization by commensal bacteria). 

Aside from their limitations, molecular microbiological approaches hold promise for 

documenting intrinsic PAH biodégradation activity and sustainability in a more efficient and cost-

effective manner than traditional approaches, potentially leading to greater acceptance of MNA at 

PAH contaminated sites. Technologies based on the emerging molecular microbiological techniques 

presented above that hold promise for impacting monitoring programs at the practical level are DNA 

microchip array technologies, the Biolog® system, quantitative PCR, and automated fluorescence in 

situ hybridization and flow cytometric systems, due to their current or pending future mechanization 

and potential for rapid and low cost turn-over of detailed microbial information. 
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2.11 Natural Attenuation of PAH-Contaminated Sites: Case Studies 

Limited studies are available in the literature on the natural attenuation of sites contaminated 

with PAH compounds. The following is a summary of the results from these publications in which 

critical site parameters and degradation rates were reported. These results are tabulated in Table 2.8 

along with results from other studies that have limited data. Where available, tertiary lines of 

evidence such as data from laboratory incubations with site sediments and/or results from molecular 

microbiological studies have been incorporated into the summaries. Regulatory acceptance of MNA 

at PAH contaminated sites may rely heavily on these tertiary lines of evidence, as much uncertainty 

may exist in monitoring data. 

2.11.1 Case Study 1. EPRI Site No. 24, South Glenn Falls, Saratoga County, New York 

This study was conducted to demonstrate and document the effectiveness of the removal of 

MGP tar source material and natural attenuation of the contaminant plume as a remediation 

alternative for MGP sites (EPRI, 1996). The 4.5-acre site is approximately 0.8 km northwest of the 

Hudson River and west of South Glenn Falls, New York. In the 1960's, several 200-liters drums of 

gas main sealant along with 15,000 to 60,000 liters of coal tar were pumped into a shallow, unlined 

trench at the site. The MGP waste has contaminated approximately 5,500 cubic meters of soil, 

forming a dissolved phase plume stretching approximately 430 m down-gradient. The geology of the 

site consists of a shallow (0.5 m) top soil layer underlain by 4.6 m of coarse to medium grained sands. 

Silt and clay to very fine-grained sands become predominant between 4.6 - 6 m below ground surface 

(bgs). Soil borings revealed a confining clay to silty clay layer between 6 to 7.3 m bgs. The sands 

were well sorted and stratified, characteristic of a glacial outwash deposit (EPRI, 1996). Hydraulic 

conductivities, measured by several slug tests and pumping tests, were found to range from 0.09 m/d 

to 8.16 m/d in the various silts and sediments. The average groundwater velocity through the site was 

estimated to be 0.096 m/d with an average horizontal hydraulic gradient of 0.0086 m/m. The average 

bulk density and porosity of the site soils were determined to be 1997 kg/m3 and 0.35, respectively. 

Remediation activities were initiated in 1987, which included source soil removal, 

groundwater contaminant, geochemistry, and microorganism sampling, laboratory batch 

biodégradation studies, and plume-scale modeling efforts with the numerical code MYGRT™. The 

focus of the monitoring program was the natural attenuation of the dissolved-phase plume following 



www.manaraa.com

31 

source removal. Transects of the contaminant plume down the centerline and across the plume in 

several locations showed clearly that dissolved oxygen concentrations were depleted in regions of 

high PAH contamination suggesting that active bioremediation of the contaminant plume was 

occurring. Laboratory studies of site soils showed increased numbers of PAH-degrading organisms 

in the contaminated cores and elevated protozoa counts down-gradient of the source, supporting the 

premise that active bioattenuation was occurring in the contaminant plume (EPRI, 1996). 

Investigations of the site soils within the dissolved-phase contaminant plume yielded organic 

carbon contents of the site soils between 0.5 % and 2.1 %, but in general less than 1%. Based on 

these results, the retardation coefficients for naphthalene, acenaphthylene, phenanthrene, and toluene 

were estimated to be 4.0, 2.7, 10, and 1.7, respectively. Using these coefficients with the MYGRT™ 

transport code and field sampling data, estimates of the first-order decay rate coefficients for 

naphthalene, acenaphthylene, phenanthrene, and toluene were found to be 2.7 x 10"4 d"', 2.7 x 10"4 d"1, 

2.7 x 10"5 d"1, and 6.8 x ÎO4 d"1, respectively. Over the course of three years of monitoring the 

dissolved-phase plume after source removal, extensive dissipation in the naphthalene, 

acenaphthylene, and toluene plume sizes and concentrations were observed. No detectable 

phenanthrene was observed in any groundwater sample from any well three years after source 

removal. Modeling and monitoring results suggest that no naphthalene will be present at any location 

in the groundwater above the 10 ng/L detection limit by the year 2030. 

2.11.2 Case Study 2. Former Manufacturing Gas Plant (FMGP) site, Charleston, South Carolina, 

This study was conducted to assess whether contamination from a FMGP site that operated 

from 1855 to 1957 in downtown Charleston, South Carolina would impact the adjacent Cooper River. 

The path of the plume from the FMGP site to the Cooper River transverses an 8-acre National Park 

Service property (Campbell et al., 1996). According to Landmeyer et al. (1998), the geology of the 

property consists of two Quaternary lithostratigraphic marine units, the Wando Formation and 

Holocene deposits, overlain by fill. The fill is composed of sand, silt, wood, sawdust, concrete, 

bricks, cinders and various other scrap materials. The depth of the fill varies from 3 to 6.1 m deep, 

and is considered to be an unconfined (fill) aquifer. The Wando Formation consists of soft organic 

clay overlain by gray sand with a lower depth of about 23 m below ground level while the upper 

depth varied between 10.6 and 16.8 m below ground level (Campbell et al., 1996). It is considered to 

be the lower confined aquifer at the site. The Holocene deposits provide a confining layer between 
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the upper unconfmed fill aquifer and lower confined sand aquifer. These deposits are composed of 

clayey to silty sand and soft, organic-rich clay with a thickness that varies from 1.5 m to as much as 

12.2 m (Landmeyer et al., 1998). The hydraulic conductivities were from 0.03 to 3 m/d for the upper 

unconfmed fill aquifer and 4.9 m/d for the lower confined sand aquifer. The depth to water at the site 

is approximately 0.5 m below ground level. 

An intrinsic bioremediation study was initiated in 1993 which included sampling of 

groundwater contaminants and geochemical parameters, laboratory analysis of adsorption coefficients 

and biodégradation rates with aquifer materials, and modeling efforts of the plumes with the 

numerical code SUTRA (Campbell et al., 1996). The focus of the study was on the unconfmed fill 

aquifer. During two sampling events of redox parameters in 1994 and again in 1997, dissolved 

oxygen was not present in any of the wells. High dissolved ferrous iron concentrations were observed 

in some wells. However, the presence of hydrogen at concentrations between 0.95 nM and 4.34 nM 

in these wells suggested that the ferrous iron was produced in earlier times of iron reducing 

conditions and that the aquifer was experiencing sulfate-reducing conditions (Landmeyer et al., 

1998). This was evidenced by the concentrations of hydrogen sulfide and dissolved sulfate of up to 

5.11 mg/L and 633 mg/L, respectively. The presence of methane up to 13.4 mg/L indicated that 

methanogenic bacteria were present within the contaminant plume as well. Campbell et al. (1996) 

determined through laboratory analyses that the first-order biodégradation rates of toluene using 

aquifer sediments were 0.84 d"1 and 0.0020 d"1 for aerobic and anaerobic environments, respectively 

while the laboratory adsorption coefficient was determined to be 0.94 L/kg. In the case of 

naphthalene, the first-order laboratory microbial degradation rates were 0.88 d"1 and 4.6 x 10"5 d"1 for 

aerobic and anaerobic environments, respectively. The naphthalene linear sorption coefficient for the 

sediments was estimated in the laboratory to be equal to or greater than 137 L/kg. Using site 

modeling techniques and field sampling data, these researchers reported best estimates for toluene 

first-order degradation rate constant and linear sorption coefficient to be 9 x 10"5 d"1 and 0.62 L/kg, 

respectively using hydraulic conductivities between 0.12 to 1.2 m/day. Using the same hydraulic 

conductivities the best-fit model estimates for the first-order degradation rate constant and linear 

sorption coefficient for naphthalene were 9.0 x 10"5 d"1 and 0.62 L/kg, respectively. These results 

showed that field degradation rates for these compounds were more closely related to anaerobic lab 

degradation rates. The model simulations using the modeled best-estimates indicated that toluene 

will not impact the Cooper River within 150 years but naphthalene will impact the Cooper River 

within this time period at a concentration of less than 5 mg/L. 
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2.11.3 Case Study 3. Creosote Source Emplacement, CFB Borden, Ontario, Canada 

The natural attenuation study at the CFB Borden site was initiated on August 8, 1991. Coal 

tar creosote compounds were placed below the water table in two 1.5 m long by 5 m wide by 1.5 m 

deep excavations of an unused sand pit at CFB Borden, Ontario, Canada (Fowler et al., 1994; King 

and Barker, 1999). The source material consisted of 74 kg of creosote mixed with approximately 

5,800 kg of sand and several kilograms of sodium chloride with a resulting residual creosote content 

of approximately 7% of the source pore volume. The geology of the site consisted of an 

unconsolidated aquifer of medium to fine sand of glacio-lacustrine origin with a hydraulic 

conductivity of approximately 6 m/d to 8.4 m/d, longitudinal dispersivity between 0.08 m and 0.036 

m, and transverse dispersivity of 0.03 m to 0.039 m. The sand aquifer grades into silts and clays at a 

depth of approximately 9 m and the water table fluctuates between the ground surface and a depth of 

1.5 m. The groundwater velocities were estimated to range between 0.081 m/d to 0.0947 m/d. The 

quality of the background groundwater was considered to be hard, with oxygen contents ranging up to 

8.5 mg/L and averaging 2.47 mg/L, nitrate concentrations ranging from 0.6 mg/L to 6 mg/L, and 

sulfate concentrations were between 10 mg/L and 30 mg/L. The groundwater contained low 

dissolved organic carbon (<0.7 mg/L) and the temperature and pH varied between 6-15 °C and 7.1 to 

7.9, respectively. The aquifer material had organic carbon contents ranging from 0.01% to 0.09% 

with an average of 0.02%. The porosity, bulk density, and solids density of the aquifer material taken 

as the volume-weighted arithmetic means of 36 samples were estimated to be 0.33, 1.81 g/cm3, and 

2.71 g/cm3, respectively. 

Groundwater samples were obtained from various multilevel samplers over the course of four 

years. Retardation coefficients were estimated from field data (based on chloride migration) for 

phenol (1.05), m-xylene (2.5 at 5.9 m from the source and 3.7 at 24.05 m from the source), 

naphthalene (2.6 at 5.9 m from the source and 3.5 at 24.05 m from the source), and dibenzofuran 

(3.12 at 5.9 m from the source) (King and Barker, 1999; King et al., 1999). Laboratory batch sorption 

experiments yielded linear distribution coefficients (L/kg) of 0.22 for naphthalene, 1.80 for 

phenanthrene, 0.67 for dibenzofuran, 0.83 for carbazole, and 0.24 for 1 -methylnaphthalene, resulting 

in estimates of the linear retardation coefficients based solely on sorption of 2.2, 10.87, 4.67, 5.55, 

and 2.31, respectively. Batch sorption experiments for phenol and m-xylene yielded linear 

distribution coefficients equal to zero. Therefore, estimates of the linear distribution coefficients were 

made based on the octanol-water partition coefficients and equaled 0.01 for phenol and 0.11 for m-

xylene, resulting in retardation coefficients of 1.05 and 1.6, respectively (King et al., 1999). 
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Redox parameters were monitored at 1,008 and 1,357 days after source emplacement both 

inside and outside the creosote plume. Average dissolved oxygen concentrations dropped from 2.47 

mg/L outside the plume to 0.13 mg/L inside the plume. Nitrate and ammonia concentrations were 

greatly variable, however, the average values decreased from 2.35 mg/L to 1.51 mg/L and 0.62 mg/L 

to 0.21 mg/L, respectively, from outside to inside the contaminant plume. In addition, anaerobic 

degradation of the compounds was suggested by increases in reduced iron (0 mg/L to 0.2 mg/L), 

reduced manganese (<0.05 mg/L to 0.13 mg/L), and methane (0.001 mg/L to 0.036 mg/L) and a 

decrease in sulfate (14.1 mg/L to 11.6 mg/L) from outside to inside the contaminant plume. 

Phospholipids fatty acids analysis of aquifer cores indicated a higher concentration of 

microorganisms inside the contaminant plume than outside the plume. 

Phenol was observed to deplete quickly from the source material and migrate as a discrete 

slug after 439 days, at which time the peak concentration was only 7% of the 55 day concentration 

compared to 44% for chloride, suggesting significant transformation given its low sorptivity. In 

contrast, dibenzofuran, naphthalene, phenanthrene, carbazole, 1 -methylnaphthalene, and m-xylene 

were not completely released from the source. m-Xylene was observed to increase in extent from 

zero to 626 days followed by recession back to the source at 1,008 days and 1,357 days due to 

transformation. The dibenzofuran plume was observed to reach steady state by 1,008 days as the 

mass flux into the plume was balanced by mass transformation within the plume. Phenanthrene was 

observed to rapidly expand into the aquifer from 626 to 1,008 days and then receded and decreased in 

mass at 1,357 days. Like dibenzofuran, carbazole was observed to reach steady state between 1,008 

and 1,357 days, but was attributed to a decrease in source loading. The naphthalene and 1-

methylnaphthalene plumes steadily increased in extent and mass over the time course of the sampling 

while the source fluxes decreased. All compounds were observed to be transformed in the 

contaminant plume, with half-lives of 78 d, 1,215 d, 11 - 49 d, 173 d, 99 d, 4Id, and 110 d for m-

xylene, naphthalene, phenanthrene, 1-methylnaphthalene, phenol, dibenzofuran, and carbazole, 

respectively; the estimated first order decay coefficients were 8.9 x 10"3 d"% 5.7 x 10"4 d"1, 0.014 -

0.063 d"1, 4.0 x 10"3 d'1, 7 x 10"3 d"1, 0.017 x 10"3 d"1, and 6.3 x 10"3 d"1, respectively. However, the 

phenanthrene half-life may be subjected to significant error due to the assumption of linearity 

between sampling events and large changes in phenanthrene concentration. Based upon the modeling 

results, it was expected that the naphthalene plume would continue to advance for at least two more 

years before reaching steady-state. 
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2.11.4 Case Study 4. Pulse Injection, Columbus Air Force Base, Macrodispersion Experiment Site 

(MADE), Columbus, Mississippi 

This natural attenuation study was initiated on June 26, 1990. The objective of this study was 

to measure degradation due to natural attenuation of a pulse injection of tritiated water, benzene, p-

xylene, naphthalene, and o-dichlorobenzene in the saturated region of an unconfmed aquifer at the 

macrodispersion experiment (MADE) site of Columbus Air Force Base, Columbus, Mississippi. At 

approximately 40 m down-gradient of the injection source, lower hydraulic conductivity regions 

prevail (0.86 m/d). From 40 m to approximately 200 m down-gradient of the injection source, the 

upper 3 m of the aquifer has an average hydraulic conductivity of 86 m/d while the hydraulic 

conductivity of the soil underlying this region remains low. Three hundred and twenty eight 

sampling wells were on the site, most of which contained multilevel samplers (Boggs et al., 1992), 

A mass balance based on spatial moment analysis and compared with tritium migration was 

used to estimate biodégradation rates. A pulse of 9,600 L of dilute tracer and the organic compounds 

was released over 47.5 hours through 0.6 m screened intervals, 4 m below the phreatic surface, in five 

injection wells spaced at 1 m intervals forming a line normal to the direction of the hydraulic 

gradient. Concentrations in the injection fluid were 55.6 (j,Ci/L tritium, 51.5 mg/L p-xylene 

containing 2.77 pCi/L 14C radiolabeled p-xylene, 68.1 mg/L benzene, 7.23 mg/L naphthalene, and 

32.8 mg/L o-dichlorobenzene. Aqueous samples were taken from multilevel samplers at 27, 132, 

224, 328, and 440 days after injection, and dissolved oxygen concentrations were monitored 8 days 

prior to and 48, 111, 161, 264, and 330 days after injection. 

Linear distribution coefficients estimated from batch studies on the aquifer material for 

naphthalene, o-dichlorobenzene, p-xylene, and benzene were 0.085 L/kg, 0.065 L/kg, 0.048 L/kg, and 

0.059 L/kg, respectively. However, because of the strong influence of degradation, the effects of 

sorption on organic solute distributions were considered minimal and therefore ignored in assessing 

degradation rates. The temporal average dissolved oxygen concentration in the contaminant plume 

was determined to be 3.8 mg/L with a minimum individual value of 2.6 mg/L, suggesting aerobic 

conditions. Degradation in the Columbus aquifer material was observed to be approximately first 

order with an initial lag period attributed to microbial adaptation, cell growth and substrate limitation. 

The maximum first-order degradation plus dilution rates were taken directly from plots of 

contaminant concentration versus time. The degradation rates were then corrected to yield 

degradation rates for the four compounds by subtracting the first-order rate of migration of tritium out 

of the region of interest from these maximum values. The resulting approximate first order 
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degradation rate constants obtained from this method were 0.0066 d"1, 0.0141 d"1, 0.0063 d"1, and 

0.0059 d"1 for benzene, p-xylene, naphthalene, and o-dichlorobenzene, respectively. 

In later studies, changes in the subsurface catabolic gene frequencies {alkB, nahA, nahH, 

todClC2, and xylA) before emplacement and during natural attenuation of a model jet fuel mixture of 

similar composition to the previous injection mixture (containing: benzene, 7.6 mg-kg"'; toluene, 

1083 mg-kg"'; ethylbenzene, 1163 mg-kg"1; p-xylene, 1134 mg-kg"'; naphthalene, 1282 mg-kg"'; 

decane, 11713 mg-kg"'; and potassium bromide, 45 mg-kg"' as a conservative tracer) were 

characterized (Stapleton and Sayler, 1998; Stapleton et al., 2000). Prior to emplacement of the source 

material, the presence of all target gene sequences was observed in nearly all of the 60 samples 

analyzed. The average percent of the microbial community containing specific catabolic genetic 

elements were 10.8 (±11.2), 7.6 (±8.5), 11.1 (±12.0), 7.3 (±5.2), and 2.5 (±1.8) for alkB, nahA, nahH, 

todClC2, and xylA, respectively. The average total (uncontaminated) biomass was estimated using 

hybridization to the 16S rDNA Universal oligonucleotide to be 7.7 x 108 ± 4.7 x 108 cells per gram 

sediment. Mineralization of benzene (20-60%), toluene (60-90%), naphthalene (60-90%), and 

phenanthrene (60-90%) after 14 days was observed in laboratory incubation with uncontaminated site 

sediments following lag phases of 1-5 days. 

248 days following emplacement of the source material, the mineralization potentials of the 

site sediments in the plume increased over background values (e.g. naphthalene: averages of 21 and 

40% and maximums of 42 and 60% in two samples at 24 hours incubation and less than 5% in 

background samples; toluene: averages of 5-10% and maximums of 10 and 32% in 24 hours and less 

than 5% in background samples). The largest impact on total microbial biomass in the aquifer 

occurred near the source trench, which initially exhibited a growth response at 164 days followed by a 

significant drop at 278 days following source emplacement. The presence of all catabolic genetic 

elements showed significant response to the hydrocarbon exposure suggesting the development of 

pollutant-degrading microbial community within the contaminant plume. At 40 days after source 

emplacement, the percent of the microbial community containing specific catabolic genetic elements 

in the source trench were 11%, 5%, 9%, 13%, and 1% for alkB, nahA, nahH, todClCl, and xylA, 

respectively. The percent of the microbial community containing these genetic elements increased 

substantially at later times following source emplacement, peaking at 52% (462 days), 29% (164 

days), 66% (278 days), 68% (164 days), and 83% (278 days) for alkB, nahA, nahH, todClC2, and 

xylA, respectively. Sediments in the contaminant plume region responded similarly, but to a lesser 

extent. These results supported extensive potential of the intrinsic microbial community of this 

aquifer to respond to the anthropogenic contaminants observed in laboratory incubations with site 
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sediments, and highlighted the potential for molecular microbiological techniques to support 

monitoring efforts for MNA at PAH contaminated sites. 

2.11.5 Case Study 5. Unlined Municipal and Industrial Landfill, Vejen, Denmark 

The objective of this study was to identify specific redox environments controlling the fate of 

specific xenobiotic organic contaminants in a contaminant plume resulting from leachate leaking 

from an unlined municipal and industrial landfill in Vejen, Denmark. The landfill operated between 

1962 and 1981. The leachate has been characterized and determined to contain BTEX, herbicides, 

phenols, substituted benzenes, and naphthalene (Lyngkilde and Christensen, 1992). The site geology 

consists of a shallow, unconfined, sandy glacioalluvial aquifer, confined at the bottom by a clay 

deposit at a depth of 20 m close to the landfill and rising to a depth of 10 m at a distance of 400 m to 

500 m down-gradient of the landfill. Small clay lenses can be found within the aquifer with a single 

substantial clay lens stretching out into the aquifer from below the landfill. The pore water velocity 

in the landfill was estimated to be 0.41 m/d to 0.55 m/d. 

Monitoring of the site was conducted at 41 well nests of two monitoring wells, each with a 10 

cm sampling screen set at different depths, all within 130 m of the landfill and set upon the plume 

centerline. Prior to initiation of the study, redox sensitive parameters were monitored and it was 

estimated that the groundwater within the contaminant plume was primarily anaerobic. A 

methanogenic region stretching to less than 50 m from the landfill was followed by sulfidogenic, 

ferro-Zmanganogenic, and nitrate-reducing redox zones. Aerobic conditions were again observed at 

about 300 m down-gradient of the landfill. 

Using chloride as a conservative tracer, the site was monitored for 285 days to observe the 

leachate plume characteristics. It was observed that the contaminant plume was stationary, and 

therefore the rate of source influx was balanced by degradation, dilution and dispersion. Changes in 

the chloride concentration were used to estimate dispersive losses and thus allowed for the estimation 

of degradative losses by subtracting dispersive losses from the overall change in concentration with 

distance for a specific compound. Utilizing this method, it was observed that the compounds studied 

completely degraded under anaerobic (ferrogenic) conditions. First-order degradation rate constants 

estimated from half lives taken from the plots of corrected compound disappearance versus distance 

for BTEX and naphthalene were 0.009 d"1 to 0.013 d"1 and 0.01 Id"1 to 0.015 d"1, respectively 

(Lyngkilde and Christensen, 1992). Further studies of indigenous microcosms in aerobic, 

denitrifying, ferrogenic, and methanogenic conditions showed that naphthalene could only be 
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degraded under aerobic or ferrogenic conditions (Nielsen and Christensen, 1994; Albrechtsen and 

Christensen, 1994). 

2.11.6 Case Study 6. Former Manufacturing Gas Plant (FMGP) site, Dubuque, Iowa, U.S.A. 

The Dubuque Key City FMGP site is located on the south side of downtown Dubuque, Iowa, 

approximately 0.8 km west of the Mississippi River. The site originally operated as a coking facility 

(prior to 1862 until 1907), and was converted to and operated as a manufactured gas and peaking 

facility from 1907 to 1939. After plant closure, the site and the property directly to the west of the 

site housed petroleum service stations that operated between 1950 and 1993. Historic manufactured 

gas plant operations, waste disposal practice and leaking storage tanks in the manufactured gas plant 

facility resulted in contamination of the site with coal tar and MGP residuals. Leaking gasoline tanks 

at the petroleum service stations further complicated the contamination at the site and possibly 

increased the mobility and extent of migration of higher molecular weight polycyclic aromatic 

hydrocarbons (PAHs) that may be solublized by the gasoline. Natural attenuation as a remedial 

technology was investigated at this site (Ong et al., 2001). 

The geology of the site may be divided into four units: a mixed fill, cohesive and granular 

alluvium, a granular alluvial aquifer and bedrock. The mixed fill is from 0.6 to 4.8 m thick and 

consists of sand, silt, clay, gravel and debris in varying proportions. The fill is underlain by a 1.5 to 

5.8 m thick unit of interbedded cohesive and granular alluvium. The cohesive and granular alluvium 

is in turn underlain by an alluvial aquifer that ranges from 1.5 m to about 24.4 m thick. The alluvial 

aquifer is primarily composed of fine to medium grained sand and is underlain by sedimentary 

bedrock. The depth to groundwater at the site varies between 2.7 m to greater than 5.8 m bgs. The 

estimated hydraulic conductivities of the aquifer based upon slug tests in monitoring wells ranged 

from 1.5 m/d to 623 m/d. Hydraulic gradients on the site range from 0.004 to 0.006 m/m, with slight 

downward vertical gradients. Groundwater flows primarily from west-northwest to east-southeast 

through the site and towards the Mississippi River with a seepage velocity of between 56 m/yr and 84 

m/yr. 

Depleted dissolved oxygen, manganese, sulfate, and nitrate, and increased sulfide, nitrite, 

total and ferrous iron, and ammonia were measured in various monitoring wells located within the 

contaminant plume. These results indicate that various microbial processes are occurring within the 

plume. Utilizing a section of wells bisecting the plume and extending from the source region, 

reduction of several PAH and BTEX compounds with distance was observed. Assuming a steady-
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state plume and first-order decay, the overall attenuation rate coefficients for several PAH and BTEX 

compounds were estimated. The overall attenuation rates were 0.0063 d"1, 0.0081 d"% 0.0029 d"1, 

0.0028 d"1, and 0.0043 d"1 for benzene, naphthalene, acenaphthylene, anthracene, and phenanthrene, 

respectively. 

2.12 Summary and Outstanding Issues 

There are not many studies on natural attenuation of PAH-contaminated sites. In the studies 

above, the first-order decay rates of naphthalene, acenaphthylene and phenanthrene based on 

modeling of field data were estimated to be 0.00057 to 0.0063 d"1, 0.00027 d"1, and 0.000027 to 0.063 

d"1, respectively. These studies tended to focus on the degradation of low molecular weight PAH 

compounds. The environmental fate of higher molecular weight PAHs (more than three rings) were 

not documented and remain unknown. Laboratory studies have indicated that higher molecular 

weight PAH compounds may be used as carbon and energy sources or biodegraded via cometabolism 

that is stimulated by the addition of low molecular weight PAH compounds or their metabolites. 

Organisms that can directly degrade higher molecular weight PAH compounds typically have the 

ability to use lower molecular weight PAH compounds. However, because of the complex nature of 

the pollution at many of the PAH-contaminated sites, it is unclear how the presence of low molecular 

weight PAHs will impact the biodégradation of the high molecular weight PAHs and vice versa. 

The above studies have focused on merely showing a depletion of the PAH compounds at the 

field-scale, albeit from changes in source loading, sorption, degradation, or dispersion (dilution), and 

the use of simple models and laboratory studies to estimate the fate of PAHs in the environment. 

Modeling attenuation of these compounds typically involves several assumptions that may include 

steady-state plumes or rapid degradation rates (allowing the neglect of sorption), linear and reversible 

sorption models, and assumed source dissolution rates that remain constant. Aside from obvious 

limitations associated with characterizing source term and hydraulic modeling, modeling limitations 

imposed by these assumptions may preclude their usefulness as recent evidence has suggested that 

PAH sorption and desorption are highly non-linear and hysteric processes, and the strength of 

sorption can vary greatly with different geosorbents. 

There is evidence from the measurement of geochemical parameters in the above studies that 

alternate electron acceptors (other than dissolved oxygen) are being consumed in PAH-contaminated 

plumes at various sites. At the field-scale, geochemical environments tend to intertwine and lose 

clear definition. Laboratory studies of PAH degradation with soils under different electron acceptor 
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conditions display a diversity of conditions under which PAH compounds may biodegrade including 

aerobic, nitrate reducing, ferrogenic, and sulfidogenic conditions. However, these studies are 

performed in strictly isolated geochemical environments, not allowing for the study of the relative 

importance of each electron acceptor in a complex mixed geochemical environment such as those 

commonly observed at the field-scale. Degradation of PAH compounds at a contaminated site may 

well take place in micro-aerophilic regions interbedded in anaerobic regions or sulfidogenic regions 

interbedded in ferrogenic regions, etc. It is reasonable to assume not all geochemical environments 

may be important at a particular site, and the relative importance of each may change from site to site. 

Furthermore, there is no direct evidence that the existence of a particular geochemical environment 

even correlates with the biodégradation of PAH rather than non-PAH compounds such as degradation 

byproducts or co-contaminating compounds. This makes delineation of important redox conditions 

for microbial degradation of PAH compounds at the site level difficult with current methods, 

complicating modeling and monitoring efforts as all geochemical environments must be considered. 

Elucidating the dominant electron acceptor conditions for the biodégradation of PAHs in PAH-

contaminated plumes will assist in formulating strategies to stimulate and enhance the attenuation 

processes at these sites. Without an understanding of the biodégradation of PAHs in complex 

mixtures and the role of each electron acceptor, better models cannot be developed to predict the fate 

of PAH compounds during natural attenuation. 

Some of the field conditions which were not addressed in the cited studies include the impact 

of residual contamination (in the form of nonaqueous phase liquids or coating of the soils with 

contaminants such as coal tar) on the solubilities and the final fate and transport of the PAHs. 

Furthermore, the impact of co-contaminating compounds such as volatile organic carbons and 

cyanide on the degradation, solubility, and transport of PAHs were not studied. Soils taken from 

several different environments have been shown to contain organisms capable of PAH degradation in 

different geochemical environments that are not consistent from site to site. Most studies of natural 

attenuation of PAH compounds, however, have continued to regard natural microbial communities as 

a homogenous "black box". Natural microbial communities are dynamic in composition and activity 

in time and space, and therefore the microbial "black box" of these complex sites should not be 

assumed homogenous and consistent. 

Tertiary lines of evidence may be necessary to support efforts of monitored natural 

attenuation at PAH contaminated sites. The classical approach is incubation of site sediments under 

specific redox conditions to "screen" the sediments for biodégradation potential. In many cases these 

studies affect the soil or sediment microbial community structure from that of the in situ condition, 
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resulting in ambiguity regarding the applicability of laboratory results to modeling and monitoring 

efforts. Emerging molecular microbiological approaches may be well suited for bridging the gap 

between laboratory and field-scale studies, and in some cases may provide direct access to tertiary 

lines of evidence without cultivation saving time and effort. The examples presented above highlight 

the potential utility of emerging molecular microbiological techniques towards MNA efforts at PAH 

contaminated sites. 

As the trend in natural attenuation policy shifts from merely displaying disappearance of 

contaminants at the field-scale to determining precisely the fate of the compounds (the definitive 

reasons for the depletion), the circumstantial evidences of attenuation processes will need to be 

supported by more direct evidence. Future studies will require a shift toward methods that better 

describe source releases and specifically track the fate and attenuation of PAH compounds from 

dilution, sorption, and biodégradation processes. These methods must have the capability of opening 

the microbial "black-box" at contaminated sites and allow the study of the specific microbiological 

fate of contaminants under hypoxic and changing heterogeneous conditions. Based on the few studies 

presented above, natural attenuation of low molecular weight PAHs appears to be promising for these 

sites. The exact fate of PAH compounds in general, especially the higher molecular weight PAHs, 

needs further investigation. 
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Figure 2.1 Structure of the 16 U.S. EPA priority pollutant PAH compounds 
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Table 2.1 Physical-chemical properties of polycyclic aromatic hydrocarbons (LaGrega et al., 1994; WHO, 1998) 

PAH Compound Aqueous Mol. Wt. Melting Vapor Henry's Law Partitioning Freundlich 
Formula CAS RN Solubility (g-mol"1) Temp. pressure Constant Coefficients Parameters T  

(ugL-y (°C) (Pa) (KPaW-mol"1) log Kow log K*/ pH K* 1/n 
Naphthalene 31690 128.18 81.0 1.0E1 4.89E-2 3.37 3.11 NA NA NA 
C10H8 91-20-3 
Acenaphthene 3420 154.21 95.0 2.9E-1 1.48E-2 4.00 3.65 5.3 190 0.36 
C12H10 83-32-9 
Acenaphthylene 3930 152.20 93.0 8.9E-1 1.14E-3 3.70 3.40 5.3 115 0.37 
('i2I I ic 208-96-8 
Anthracene 45 178.24 216.4 8.0E-4 7.30E-2 4.45 4.15 5.3 376 0.70 
C14H10 120-12-7 
Fluorene 1690 166.22 116.0 8.0E-2 1.01E-2 4.18 3.86 5.3 330 0.28 
C13H,O 86-73-7 
Phenanthrene 1000 178.24 100.5 1.6E2 3.98E-3 4.46 4.15 5.3 215 0.44 
C14H10 85-01-8 
Fluoranthene 206 202.26 108.8 1.2E-3 6.5E-4 * 4.90 4.58 5.3 664 0.61 
C16H,O 206-44-0 
Pyrene 130 202.26 150.4 6.0E4 1.1E-3 4.88 4.58 NR 389 0.39 
C16H,Q 129-00-0 
Chrysene ¥ 1.8 228.30 253.8 8.4E-5 * NA 5.61 5.30 NR 716 0.46 
C18H, 2  218-01-9 
Benz(a)anthracene ¥ 5.7 228.30 160.7 2.8E-5 NA 5.60 6.14 NA NA NA 
C,8H, 2  56-55-3 
Benzo(b)fluoranthene * 14 252.32 168.3 6.7E-5 * 5.1E-5 6.06 5.74 NA NA NA 
C20H12 205-99-2 
Benzo(k)fluoranthene¥ 4.3 252.32 215.7 1.3E-8 * 4.4E-5 * 6.06 5.74 7.1 181 0.57 
C20H12 207-08-9 
Benzo(a)pyrene ¥ 3.8 252.32 178.1 7.3E-7 3.4E-5 * 6.06 6.74 7.1 34 0.44 
C20H12 50-32-8 
Dibenz(a,h)anthracene ¥ 0.5 278.36 266.6 1.3E-8 * 7.0E-6 6.80 6.52 7.1 69 0.75 
C22H,4 53-70-3 
Indeno(l,2y3-cd)pyrene ¥ 0.53 276.34 163.6 1.3E8 * 2.9E-5 * 6.50 6.20 NA NA NA 
C22H,2 193-39-5 
Benzo(g,h,i)perylene ¥ 0.26 276.34 278.3 1.4E-8 2.7E-5 * 6.51 6.20 1 11 0.37 
C22H,2 191-24-2 

tFrom LaGrega et al., 1994; * Probable Human Carcinogens; * at 20° C, others at 25° C,i K reported in (mg-kg-1) 
AV(=Data not available. A7?=Not reported 
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Table 2.2 lexicological data for oral exposure to select PAH compounds 

Compound Noncarcinogenic Carcinogenic Target Organ(s) and Non-Carcinogenic Critical Effect(s) 

U.S. EPA MCL Risk Factors 
(mg-kg"1-d"1) 

Risk Factors 

(Hg-V1) N
O
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L
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ro
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op
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m
g
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g
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') 

Naphthalene 
100* 

50 NA 0.02 C NA Blood: Hemolytic anemia; Gastrointestinal tract: Nausea, abdominal pain, diarrhea; 
Nervous system: lethargy, vertigo, convulsions, coma, cerebral edema, hemolysis; Liver: 
Jaundice, increased serum enzyme activity; Kidneys: Increased creatinine and blood urea 
nitrogen levels, proteinuria and hemoglobinuria, anuria, tubular necrosis, hemolysis; Eyes: 
Restricted visual fields, optic atrophy, and cataracts; Reproduction: Hemolytic anemia in 
infants exposed during pregnancy. 

Acenaphthene 
2000* 

175 350 0.06 

" 

Liver: increased liver weights, hepatocellular hypertrophy, and increased cholesterol 
levels; Reproductive System: decreased ovary weights, inactivity of the ovaries and 
uterus, and fewer and smaller corpora lutea. 

Anthracene 
10000§ 

1000 NA 0.3 D - Hematopoietic System: decreased hemoglobin levels, reticulocytosis, and leucopenia; 
Gastrointestinal tract: melanosis of the colon and rectum 

Fluoranthene 
NA 

125 250 0.04 D - Kidney: nephropathy; Liver: increased liver weights and increased liver enzyme levels 
resulting in microscopic lesions. 

Pyrene 
NA 

75 125 0.03 D - Kidney: nephropathy and decreased kidney weights; Liver: increased liver weights 
Blood: slight hematologic effects 

Benzo(a)pyrene 
0.2 

NA NA NA B 7.3 Blood: red blood cell damage, leading to anemia; Immune System: suppressed immune 
system; Reproductive system: developmental and reproductive effects, Increased fetal 
mortality 

2-Methylnaphthalene 
NA 

NA NA 0.004 - - Respiratory System: Pulmonary alveolar proteinosis 

NA = Data not available at this time; NOAEL = No Observed Adverse Effects Level; LOAEL = Lowest Observed Adverse Effects Level; MCL = EPA 
maximum contaminant level from safe drinking water standards 
f HAL = EPA health-advisory level, lifetime;5 DWEL = EPA Drinking Water Equivalent Level 
1. Cancer Group: B=Probable human carcinogen, C-Possible human carcinogen, D=Not classifiable as to human carcinogenicity 
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Table 2.3 Composition of several PAH mixtures and predicted effective solubilities of the PAH compounds. 

Source: Coal Tar Coal Tar Coal Tar Creosote 
Peters and Luthy ( 1993) Ghoshal et al. ( 1996) Mueller et al. (1989) 

Estimated Source Molecular Weight: 210 g/mol 226 g/mol 158 g/mol 

Compound 

Pure Solid 
Aqueous 

Solubilityf 

Og/L) 

Fugacity 
Ratio * 
(/V) 

Mass 
Fraction 

(% by wt.) 

Estimated 
Solubility§ 

WW 

Mass 
Fraction 

(% by wt.) 

Estimated 
Solubility§ 

Og/L) 

Mass 
Fraction 

(% by wt.) 

Estimated 
Solubility§ 

Og/L) 

Naphthalene 31690 3.57 2.16 4010 10 2000 11.05 15400 
Acenaphthene 3420 5.0 1.52 410 1.3 370 3.4 690 
Acenaphthylene 3930 4.55 0.68 150 0.37 86 NA — 

Anthracene 45 100 0.59 31 2 114 11.05 440 
Fluorene 1690 7.69 1.4 230 NA — 6.8 840 
Phenanthrene 1000 5.56 2.12 140 0.16 11.3 11.05 550 
Fluoranthene 206 7.14 0.3 4.6 0.55 9 3.4 39 
Pyrene 130 20.0 0.5 14 NA — 1.7 35 
Chrysene 1.8 200 0.27 0.9 0.36 1.3 1.7 4.2 
Benz(a)anthracene 5.7 25.0 0.31 0.4 NA " NA — 

Benzo(b)fluoranthene 14 26.6 NA — 0.4 1.3 NA — 

Benzo(k)fluoranthene 4.3 76.9 NA — 0.16 0.47 NA — 

Benzo(a)pyrene 3.8 33.3 1.8 1.9 0.36 0.41 0.85 0.67 
Dibenz(a,h)anthracene 0.5 250 NA — 0.04 NA NA — 

Indeno(l,2,3-cd)pyrene 0.53 NA NA -- NA — NA — 

Benzo(g,h,i)perylene 0.26 333 NA — NA — NA — 

t At 25°C 

* Adapted from Peters et al., 1996 
S Based on Raoult's Law 
NA Data not available 
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Table 2.4 Half-lives and first-order decay rates of the 16 U.S. Priority PAH Pollutants in 
soils and sediments under aerobic conditions in laboratory and field studies. 

Compound Half-life 
(days) 

First order 
decay rate, k 

(d'1) 

Condition Reference 

Naphthalene 0.277 2.5 Soil slurry Simpkin and Griesbrecht (1994) 
Acenaphthene 134 0.0052 Soif Park et al. (1990) 
Acenaphthylene 42-60 0.012-0.017 Soil' Kincannon and Lin (1985) 
Anthracene 55 0.0125 SoilF Kasterner et al. (1999) 
Fluorene 7 - 8  0.087-0.099 Soil slurry Durate et al. (1997) 
Phenanthrene 36 0.019 Sediment Michel et al. (1995) 
Fluoranthene 7 - 8  0.087 - 0.099 Soil slurry Durate et al. (1997) 
Pyrene 4.5 0.155 Soif Schwab et al. (1995) 
Chrysene 33 0.021 Sediment Michel et al. (1995) 
Benzo(a)anthracene 75-80 0.0087 - 0.0092 SoilF Pott and Henrysson (1995) 
Benzo(b)fluoranthene 39 0.018 Sediment Michel et al. (1995) 
Benzo(k)fluoranthene 46 0.015 Sediment Michel et al. (1995) 
Benzo(a)pyrene 25 0.028 SoilF Kanaly et al. (1997) 
Dibenz(a,h)anthracene 420 0.0017 Soif Park et al. (1990) 
Indeno(l,2,3-cd)pyrene 232 0.003 Soif Park et al. (1990) 
Benzo(g,h,i)perylene 590-650 0.0011 -0.0012 Soif Coover and Sims (1987) 

indicates field study 
L indicates laboratory study 
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Table 2.5 Representative PAHs metabolized by different microorganisms 
Compound Rings Predominant Sites 

of Initial Enzymatic 
Attack1 

Microorganism(s) Cmts2 References 

Naphthalene 2 (1,2) Rhodococcus sp. 
Pseudomonas sp. 
Acinetobacter calcoaceticus 
Mycobacterium sp. 
Nocardia sp. 
P. acidovorans 
P. fluorescens 
P. putida 
Oscillatoria sp. 

S 
s 
s 
s 
s 
s 
s 
s 
s 

Bouchez et al. (1996) 
Aitken et al. (1998);Ryu et al. (1989) 
Heitkamp et al. (1998) 
Treccani et al. (1954) 
Treccani et al. (1954) 
Jeffrey et al. (1975) 
Jeffrey et al. (1975) 
Cerniglia et al. (1980) 
Cerniglia and Gibson (1977) 

Acenaphthene 3 (V),(6,7) Pseudomonas sp. 
Neptunomonas naphthovorans 

s 
c 

Komatsu et al. (1993) 
Hedlund et al. (1999) 

Acenaphthylene 3 (V) Pseudomonas sp. s Komatsu et al. (1993) 

Anthracene 3 (1,2), (6,7) Rhodococcus sp. 
Pseudomonas sp. 
Bjerkandera sp. 

s 
s 
s 

Bouchez et al. (1996) 
Bouchez et al. (1996) 
Field et al. (1995) 

Fluorene 3 (1,2), (1,1a), (3,4), 9 Pseudomonas sp. 
Rhodococcus sp. 
Pseudomonas saccharophila 
Mycobacterium sp. 

s 
s 
c 
c 

Foght and Westlake (1988) 
Bouchez et al. (1996) 
Stringfellow and Aitken (1995) 
Boldrin et al. ( 1993) 

Phenanthrene 3 (1,2), (3,4), (9,10) Rhodococcus sp. 
Pseudomonas sp. 
Mycobacterium flavescens 
Mycobacterium sp. 
Flavobacterium sp. 
Beijerinckia sp. 
Pseudomonas putida 
Streptomyces flavovirens 
Agmenellum quadruplicatum 
Cunninghamella elegans 
Phenerochaete chysosporium 
Syncephalastrum racemosum 

s 
s 
s 
s 
s 
s 
s 
s 
s 
c 
c 
c 

Bouchez et al. (1996) 
Bouchez et al. (1996) 
Dean-Ross and Cerniglia (1996) 
Heitkamp et al. (1988) 
Stucki and Alexander (1987) 
Stucki and Alexander (1987) 
Jerina et al. (1976) 
Sutherland et al. (1990) 
Narro et al. (1992) 
Cerniglia and Yang (1984) 
Sutherland et al. (1991) 
Sutherland et al. (1993) 

1 Sources: Kanaly and Harayama, 2000; Sutherland et al., 1995; Ellis et al., 2003 
2 Cmts = comments - indicates whether the microorganism utilized the PAH compound as sole carbon source (S) or via cometabolism (C). 
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Table 2.5 Representative PAHs metabolized by different microorganisms (cont.) 
Compound Rings Predominant Sites 

of Initial Enzymatic 
Attack1 

Microorganism(s) Cmts2 References 

Fluoranthene 4 (1,2), (2,3), (7,8) Rhodococcus sp. 
Pseudomonas sp. 
Mycobacterium flavescens 
Mycobacterium sp. 
Pseudomonas paucimobilis 

S 
S 
s 
s 
s 

Bouchez et al. (1996) 
Bouchez et al. (1996) 
Dean-Ross and Cerniglia (1996) 
Boldrin et al. (1993) 
Mueller et al. (1990) 

Pyrene 4 (V),(4,5) Rhodococcus sp. 
Pseudomonas sp. 
Mycobacterium flavescens 
Xanthamonas sp. 
Mycobacterium sp. 
Bacillus sp. 
Alcaligenes denitrificans 
Cunninghamella elegans 
Pénicillium sp. 

s 
s 
s 
s 

c ,s  
s 
c 
c 
c 

Walter et al. (1991) 
Bouchez et al. (1996) 
Dean-Ross and Cerniglia (1996) 
Grosser et al. (1991) 
Ye et al. (1996); Heitkamp et al. (1988) 
Kazunga and Aitken (2000) 
Weisenfels et al. (1990) 
Cerniglia et al. (1986) 
Sack and Gunther (1993) 

Chrysene 4 (V) Sphingomonas paucimobilis 
Pseudomonas fluorescens 
Achromobacter sp. 

c 
s 
s 

Ye et al. (1996) 
Caldini et al. (1995) 
Cutright and Lee (1994) 

Benzo(a)-anthracene 4 (3,4), (5,6), (8,9), 
(10,11) 

Sphingomonas paucimobilis 
Pseudomonas fluorescens 
Pleurotus sp. Florida 

c 
c 
c 

Ye et al. (1996) 
Caldini et al. (1995) 
Wolter et al. (1997) 

Benzo(b)-fluoranthene 5 Sphingomonas paucimobilis c Ye et al. (1996) 

Benzo(k)-fluoranthene 5 Achromobacter sp. c Cutright and Lee (1994) 

Benzo(a)pyrene 5 (4,5), (7,8), (9,10) Pseudomonas saccharophila P15 
Bjerkandera sp. BOS55 
Sphingomonas paucimobilis 
Xanthamonas sp. 
Mycobacterium sp. 

c 
c 
c 
c 
c 

Chen and Aitken (1999) 
Kotterman et al. (1998) 
Ye et al. (1996) 
Grosser et al. (1991) 
Heitkamp and Cerniglia (1989) 

Dibenz(a,h)anthracene 5 Sphingomonas paucimobilis 
Achromobacter sp. 

c 
c 

Ye et al. (1996) 
Cutright and Lee (1994) 

Sources: Kanaly and Harayama, 2000; Sutherland et al., 1995; Ellis et al., 2003 
2 Cmts = comments - indicates whether the microorganism utilized the PAH compound as sole carbon source (S) or via cometabolism (C). 
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Table 2.6 Phylotypic relatedness of bacteria associated with PAH mineralization as reported in literature. 

JPh^lum/Class__Genu£^£ecies_ Geographical source Referenced) 

Aerobic 
a-Proteobacteria Sphingomonas 

fi-Proteobacteria 

y-Proteobacteria 

Actinobacteria 

Firmicutes 

Bacteriodetes 

Nitrate-Reducing 
/3-Proteobacteria 

y-Proteobacteria 

Alcaligenes; Burkholderia; 
Bordetella; Acidovorax', Variovorax; 
Pseudomonas sp. V-07-10; 
Comamonas; Copiotrophic 
ultramicrobacteria 

Cycloclasticus; Pseudomonas; 
Moraxella; Marinobacter; Vibrio', 
Halomonas; Pseudoalteromonas; 
Marinomonas; Acinetobacter; 
Stenotrophomonas 

Mycobacterium', Rhodococcus; 
Arthrobacter; Streptomyces; 
Nocardiodes\ Gordonia\ Nocardia; 
Terrabacter, Tsukamurella 

Bacillus cereus P21; Paenibacillus 

Flavobacterium 

Variovorax-, Bordetella; Alcaligenes 

Pseudomonas; Vibrio 

New Jersey; Texas; Illinois; 
Germany; Florida; Boston 
Harbor; Sweden; France; 
South Carolina 

Boston Harbor; New Zealand; 
Canada; Sweden; Norway; 
New York; New Jersey; 
France; Florida; Japan 

Puget Sound; Gulf of Mexico; 
Boston Harbor; Canada; 
Sweden; New York; Florida; 
Germany; New Jersey; France; 
Japan 

Boston Harbor; Texas; 
Germany; Japan; Spain; New 
Jersey 

New Jersey; Delaware 

Boston Harbor 

Canada 

Canada; PugetSound 

Bogan et al., 2001 ; Frederickson et al., 1995; Wang et 
al., 1996; Kazunga et al., 2001; Bastiens et al., 1998; 
Daane et al., 2001 

Eriksson et al., 2003; Laurie and Lloyd-Jones, 1999; 
Johnsen et al, 2002; Berardesco et al., 1998; 
Padmanabhan et al., 2003; Mueller et al, 1997; Bogan et 
al., 2001; Daane et al., 2001; Goyal and Zylstra, 1996 

Geiselbrecht et al., 1996; Geiselbrecht et al., 1998; 
Daane et al, 2001; Kasai et al., 2002; Boonchan et al., 
1998; Bogan et al., 2001; Mueller et al, 1997; 
Padmanabhan et al., 2003; Eriksson et al., 2003; 
Berardesco et al., 1998; Gauthier et al., 1992; Melcher et 
al., 2002; Tagger et al., 1990 

Kastner et al., 1994; Grosser et al., 1991; Wang et al., 
1995; Uz et al., 1998; Daane et al., 2001; Trenz et al., 
1994; Sutherland et al., 1990; Saito et al., 2000; Johnsen 
et al, 2002; Berardesco et al., 1998; Kleespies et al., 
1996; Heitkamp and Cerniglia, 1988; Vila et al., 2001 

Kazunga et al., 2001 ; Daane et al., 2001 

Berardesco et al., 1998; Shiaris and Clooney, 1983 

Eriksson et al., 2003 

Rockne et al., 2000; Eriksson et al., 2003 

Sulfate-Reducing 
S-Proteobacteria Delta Proteobacterium NaphS2 San Diego Bay Hayes and Lovley, 2002; Galushko et al., 1999 
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Table 2.7 Catabolic DNA Gene Probes used for studies of PAH biodégradation 

Probe Size Related Enzyme Origin Reference 

nahA ~1 kb naphthalene dioxygenase Pseudomonas putida G7 Simon et al., 1993 
nahH ~1 kb 2,3-catechol dioxygenase Pseudomonas putida G7 Ghoshal et al., 1987 
nahG ~1 kb Salicylate hydroxylase Pseudomonas putida G7 You et al., 1991 
nahR -1.1 kb NAH7 regulatory protein Pseudomonas putida G7 You et al., 1988 
nahAaAb -2.4 kb Naphthalene dioxygenase Pseudomonas putida NCIB 9816 Berardesco et al., 1998 
ntdAc -0.3 kb Naphthalene dioxygenase Pseudomonas sp. Strain JS42 Ringleberg et al., 2001 

bphC ~0.6 kb Biphenyl dioxygenase Sphingomonas yanoikuyae B1 Daane et al., 2001 

pahA ~1 kb PAH dioxygenase Pseudomonas putida OUS82 Lloyd-Jones et al., 1999 
pY3-E16 -16 kb PAH dioxygenase Pseudomonas putida NCIB 9816 Berardesco et al., 1998 

phdA -0.13 kb phenanthrene dioxygenase Nocardiodes sp. strain K7 Saito et al., 2000 
phnAc -1.4 kb phenanthrene dioxygenase Burkholderia sp. RP007 Laurie and Lloyd-Jones, 1999 

GST -0.5 kb Glutathione S-transferase Sphingomonas spp. Lloyd-Jones and Lau, 1997 
-o w 
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Table 2.8 Summary of Various Case Studies 
Contamination 
Site Location 

Site Geology 
Depth to Water (DTW) 
Average Pore Velocity, vx 

Hydraulic Cond., Kh 

Method 
Used for 
Rate 
Estimation 

Compounds Approx. Electron 
Contain. Acceptor 

Cone. Cond. 

Lin. 1st- Ord. Ref. 
Distn. Decay 
Coeff. rate 

K, k 
(L/kg) (d"') 

MGP 
Tar Burial Site 
South Glenn Falls, 
New York 

Graded sand over a confining 
clay layer 
DTW = 2.7 m, 
vx = 0.096 m/d, 
Kh = 0.09 m/d - 8.16 m/d 

Whole field 
modeling 

Naphthalene 
Acenaphthylene 
Phenanthrene 
Toluene 

7 mg/kg 
NR 
NR 
NR 

Mixed 
Mixed 
Mixed 
Mixed 

0.81 
0.46 
2.43 
0.19 

0.00027 
0.00027 
0.000027 
0.00068 

EPRI (1996) 

MGP Waste 
Baltimore Gas and 
Electric Spring 
Gardens Facility, 

Shallow 
Unconfined 
Aquifer with fill 
material 

Gravel Laboratory 
batch studies on 
core samples 

Naphthalene 

Phenanthrene 

1000 ng/L 

1000 gg/L 

Aerobic 

Aerobic 

NR 

NR 

0.0014-
0.0069 
0.0050 -
0.0053 

Durant et al. 
(1994); 
MacFarlane et 
al. (1994) 

Baltimore, Maryland underlain by sand 
and gravel inter-
bedded with silt 
and clay lenses 
DTW = 1.6 - 5 m 
vx = NR 
Kh = NR 

Sand Laboratory 
batch studies on 
core samples 

Naphthalene 

Phenanthrene 

1000 |ig/L 

1000 |ig/L 

Aerobic 

Aerobic 

NR 

NR 

0.039-
0.0084 
0.0015-
0.0092 

underlain by sand 
and gravel inter-
bedded with silt 
and clay lenses 
DTW = 1.6 - 5 m 
vx = NR 
Kh = NR 

Clayey 
Silt 

Laboratory 
batch studies on 
core samples 

Naphthalene 

Phenanthrene 

1000 ng/L 

1000 ng/L 

Aerobic 

Aerobic 

NR 

NR 

0.0046 

0.0053 

Silty 
Clay 

Laboratory 
batch studies on 
core samples 

Naphthalene 1000 (ig/L Aerobic NR 0.010 

MGP Waste 
FMGP, 
Charleston, South 
Carolina 

Soft organic clay overlain by 
sand and artificial fill 
DTW = 0.46 m, 
vx = NR 

Laboratory 
batch studies on 
core samples 

Naphthalene 
Naphthalene 
Toluene 
Toluene 

NR 
NR 
NR 
NR 

Aerobic 
Anaerobic 
Aerobic 
Anaerobic 

1.37 
1.37 
0.94 
0.94 

0.88 
0.000046 
0.84 
0.0020 

Campbell et 
al. (1996); 
Landmeyer et 
al. (1998) 

= 0.0305 - 3.05 m/d 
Kh,sand = 4.88 m/d 

Whole field 
modeling 

Naphthalene 
Toluene 

NR 
NR 

Anaerobic 
Anaerobic 

0.62 
0.62 

0.00009 
0.00009 

NR - not reported 
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Table 2.8 Summary of Various Case Studies (cont.) 
Contamination 
Site Location 

Site Geology 
Depth to Water (DTW) 
Average Pore Velocity, vx 

Hydraulic Cond., Kh 

Method 
Used for 
Rate 
Estimation 

Compounds Approx. 
Contam. 

Cone. 

Electron 
Acceptor 

Cond. 

Lin. 
Distn. 
Coeff. 

K„ 
OVkR) 

1st- Ord. 
Decay 
rate 

k 
(d"1) 

Ref. 

Emplaced Creosote Unconsolidated sand aquifer Whole field Naphthalene 1200 Mixed 0.22 0.00057 King et al. 
Source Material underlain by silts and clays modeling mg/kg (1999) 
CFB Borden, DTW= 1.5 m, Phenanthrene 1500 Mixed 1.8 0.014-
Ontario, Canada vx = 0.066 - 0.0947 m/d mg/kg 0.063 

Kh = 6.05-8.24 m/d Carbazole 40 mg/kg Mixed 0.83 0.0063 
1- 240 mg/kg Mixed 0.24 0.0040 
methylnaphthale 
ne 

Gasoline leakage 
Former Gas Station, 
Perth, Australia 

Thick clay aquitard overlain 
by 7 —12 m fine dune sand 
DTW = 1 to 1.8 m 
vx = 0.27 — 0.47 m/d 
Kh = 8.6 to 29 m/d 

In-situ tracer test Naphthalene, 
tracer test 

Sulfate 
Reducing 

NR 0.018-
0.026 

Whole plume 
modeling on 
steady state 
plume 

Naphthalene, 
whole plume 

33 mg/kg 
1100 ng/L 

Sulfate 
Reducing 

NR 0.0039 -
0.0050 

Partial plume 
modeling on 
steady state 
Plume 

Naphthalene, 
Partial plume 

33 mg/kg 
1100 |ig/L 

Sulfate 
Reducing 

NR 0.00095 -
0.0027 

In-situ tracer test Toluene, tracer 
test 

Sulfate 
Reducing 

NR 0.0050 -
0.012 

Whole plume 
modeling on 
steady state 
plume 

Toluene, whole 
plume 

670 mg/kg 
75 mg/L 

Sulfate 
Reducing 

NR 0.0048 -
0.0073 

Partial plume 
modeling on 
steady state 
Plume 

Toluene, partial 
plume 

670 mg/kg 
75 mg/L 

Sulfate 
Reducing 

NR 0.0027 -
0.0063 

Davis et al. 
(1999); 
Thierrin et al. 
(1993); 
Thierrin et al. 
(1995) 
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Table 2.8 Summary of Various Case Studies (cont.) 
Contamination 
Site Location 

Site Geology 
Depth to Water (DTW) 
Average Pore Velocity, vx 

Hydraulic Cond., Kh 

Method 
Used for 
Rate 
Estimation 

Compounds Approx. Electron 
Contam. Acceptor 

Cone. Cond. 

Lin. 
Distn. 
Coeff. 

KD 
(L/kg) 

1st- Ord. 
Decay 
rate 

k 
(d"1) 

Ref. 

Pulsed injection of Fluvial Sedimentation Whole field Naphthalene 7.23 mg/L Aerobic 0.085 0.0063 Maclntyre et 
aqueous DTW = NR modeling O- 32.8 mg/L Aerobic 0.065 0.0059 al. (1993) 
compounds vx = NR dichlorobenzene 
MADE Site Kh = 0.086 - 864 m/d p-Xylene 51.5 mg/L Aerobic 0.048 0.0141 
Columbus AFB Benzene 68.1 mg/L Aerobic 0.059 0.0066 
Mississippi 

68.1 mg/L 

Landfill Leachate Clay deposit overlain by Whole field Naphthalene NR Iron(III) NR 0.013- Lyngkilde 
Vejen Landfill, sandy alluvial aquifer modeling of Reducing 0.015 and 
Vejen, Denmark DTW = NR steady-state Christensen 

vx = 150 - 200 m/yr plume BTEX NR Iron(III) NR 0.009- (1992) 
Kh = NR Reducing 0.011 

MGP Site Shallow unconfined aquifer Centerline Benzene 1 mg/L Anaerobic NR 0.0063* Ong et al., 
Dubuque, Iowa with fine to medium grained transect of Naphthalene 1 mg/L Anaerobic NR 0.0081* 2001 

sand plume Acenaphthene 0.15 mg/L Anaerobic NR 0.0033* Kjartanson et 
DTW = 2.7-5.8 m Phenanthrene 0.1 mg/L Anaerobic NR 0.0043* al., 2001 
vx = 0.15 - 0.23 m/d 

0.1 mg/L 

Kh = 1.50 - 623 m/d Acenaphthylene 0.1 mg/L Anaerobic NR 0.0029* 

* - overall attenuation rate 
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3. EVIDENCE OF INTRINSIC BIOREMEDIATION OF A COAL-TAR IMPACTED 

AQUIFER BASED ON COUPLED REACTIVE TRANSPORT AND 

BIOGEOCHEMICAL MASS BALANCE APPROACHES 

A paper submitted to the Journal of Contaminant Hydrology 

Shane W. Rogers, Say Kee Ong, Greg A. Stenback, Johanshir Golchin, and Bruce H. Kjartanson 

3.1 Abstract 

Coal-tar contamination resulting from former manufactured gas plant (FMGP) operations 

during the early 1900s has resulted in a contaminant plume in the shallow aquifer underlying a small 

area south of a small town in Northwestern Iowa. Site characterizations and groundwater monitoring 

were conducted to better define the microbial and geochemical response to the contamination. The 

monitoring results indicated a 450% increase in viable microorganisms based on standard 

heterotrophic plate counts coupled to hydrogeochemical evidence of aerobic and anaerobic 

respiration, supporting intrinsic bioremediation. Mass balances between contaminants and loss of 

terminal electron acceptors inside the source region and plume yielded a potential for destruction of 

4.5 kg/yr contamination, primarily through aerobic respiration (16%), nitrate-reduction (74%), and 

sulfate-reduction (7.6%). A superposition of 2-D reactive transport analytical solutions was used to 

estimate the best-fit first-order degradation rate coefficients for benzene (0.0084 d"1), ethylbenzene 

(0.0076 d'1), xylenes (0.0057 d"1), naphthalene (0.0058 d"1), 1-methylnaphthalene (0.0042 d"1), 

acenaphthene (0.0011 d"1), acenaphthylene (0.00069 d"1), and fluorene (0.0058 d"1). Using these 

degradation rate coefficients, the overall contaminant mass transformation rate based on analytical 

modeling was estimated to be 3.6 kg yr"1, comparing favorably to estimates based on the geochemical 

mass balance approach. The results of this study illustrate how coupling a superposition of analytical 

solutions and lumped-hydrocarbon biogeochemical mass balance approaches can be used to estimate 

contaminant degradation rates in a hydrogeologically and chemically complex contaminated system, 

effectively providing evidence of intrinsic bioremediation. 

3.2 Introduction 

Monitored natural attenuation (MNA) is accepted as a cost-effective remedial alternative at 

many sites contaminated with aliphatic, monoaromatic, and low-ring polycyclic aromatic 
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hydrocarbon (PAH) pollutants in light petroleum fuels such as gasoline. The success of natural 

attenuation technology at these sites has prompted interest in MNA at former coal-gasification sites 

(for a review, see Chapter 2). All 16 U.S. EPA priority PAH pollutants have been shown to be 

biodegradable under aerobic conditions. Biodégradation of several 2- and 3-ring PAHs such as 

naphthalene, 2-methylnaphthalene, and phenanthrene under nitrate-reducing, iron-reducing, and 

sulfate-reducing conditions have been shown in laboratory microcosms from contaminated aquifer, 

harbor, and estuarine sediments (Zhang and Young, 1997; Coates et al., 1996; Galushko et al., 1999; 

Hayes and Lovley, 2002; Anderson and Lovley, 1999; McNally et al., 1999; Rockne et al., 2000; 

Eriksson et al., 2003). Combined with the fact that many coal-tar impacted sites exhibit depletion of 

terminal electron accepting compounds including oxygen, nitrate, and sulfate, and production of 

coupled reduced species such as soluble iron, manganese, nitrite, sulfide, and methane relative to 

nearby pristine groundwater, MNA as a remedial mechanism at PAH-contaminated sites warrants 

attention (EPRI, 1996; King et al., 1999a,b; Campbell et al., 1996; Landmeyer et al., 1998; Lyngkilde 

and Christensen, 1992). However, a recent report by the National Research Council (2000) on MNA 

ranked the current understanding of the fate and transport of PAH compounds at contaminated sites as 

"moderate" and thus the likelihood of successful application of natural attenuation technology as 

"low". 

Practical factors and fundamental issues may limit the successful application of natural 

attenuation technologies at coal-tar impacted sites, especially in the estimation of intrinsic attenuation 

rates. Manufactured gas facilities were almost always located near railways and rivers, and were 

industrial centers for many communities. It is not uncommon for service stations and other industrial 

operations to be located on or near former coal-gasification sites. Therefore, many coal-tar 

contaminated sites have plumes that commingle with gasoline contamination, adding complications 

and complexity to natural attenuation efforts (Kjartanson et al., 2001; Ong et al., 2001). For instance, 

biodégradation of BTEX compounds in gasoline may elicit hydrogeochemical responses (e.g., 

consumption of terminal electron accepting compounds and nutrients), which may lead to 

misinterpretation of the measured geochemical data relative to coal-tar PAH contamination. Further, 

gasoline may act as a solvent for many PAH compounds, altering sorption properties, and in general 

affecting contaminant mobility (Weber et al., 2002). Close proximity to rivers often complicates 

groundwater modeling efforts at coal-tar impacted sites due to fluctuations of the groundwater surface 

in response to changes in the river stage. 

Modeling contaminant fate and transport in coal-tar-impacted systems may also be 

complicated by factors directly related to the physical-chemical properties of PAHs. Source term 
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development can be particularly challenging, not only in estimating the mass of coal-tar DNAPL 

residuals within the source region, but also in modeling dissolution kinetics. For instance, several 

researchers have determined that Raoult's Law under the local equilibrium assumption may be valid 

for modeling coal-tar source regions (Eberhardt and Grathwohl, 2002; King et al., 1999b). However, 

Peters et al. (2000) showed that NAPL solidification dynamics during the weathering process may 

significantly impact the solubility of select PAHs to the extent that ideal solubility theory may not 

hold true in all cases. Variation in PAH solubility in the source region caused by phase change is 

difficult to incorporate accurately into fate and transport models, and may lead to larger estimates of 

biodégradation rates than actually realized in situ. This may be further complicated where 

commingled contaminants such as gasoline may solubilize and transport PAH components, only to 

deposit these PAHs as solids further down-gradient of the source region following weathering of the 

more biodegradable gasoline components. 

PAH sorption behavior may also have significant impact on biodégradation rates estimated 

by fate and transport models. PAHs typically exhibit substantial sorption hysteresis and differential 

affinity (several orders of magnitude) to specific organic materials and such as soot, natural organic 

matter, coal-tar residuals, and biomass (Huang and Weber, 1997; Stringfellow and Alvarez-Cohen, 

1999; Bayard et al., 1998; Pignatello, 2000). Using a single organic carbon to model sorption may 

provide a poor match to actual site conditions. Linear and reversible sorption is often assumed for 

simplification in modeling the fate and transport of PAHs in coal-tar impacted systems. Where this 

assumption is made, it can be reasoned that biodégradation rate coefficients will be overestimated, as 

the additional (non-reversible) sink of PAH compounds to the solid phase would be captured by the 

biodégradation rate in these simplified models. Although the impact on monoaromatic hydrocarbons 

may be relatively low, the large organic carbon partitioning coefficients of PAH compounds may also 

skew model estimates of the biodégradation rate where the solid and aqueous phase degradation rate 

coefficients are modeled in a lumped approach, as is commonly done in modeling the fate and 

transport of hydrocarbons in contaminated systems. 

Another approach to approximating the assimilative capacity of natural systems is the 

application of stoichiometric balances between the disappearance of terminal electron acceptors 

(TEAs) relative to background conditions and the potential mass of selected pollutants mineralized 

(Suthersan, 1999; Wilson et al., 1985). Some researchers have suggested incorporating the loss of 

TEAs in the advection-dispersion reactive transport equation to model the degradation of selected 

contaminants using an instantaneous reaction approach (Newell et al., 1995; Davis et al., 1994). 

These approaches may be further supported by the growth of microbes within the contaminated 
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region. However, a potential weakness of these methods is that it is difficult to partition the use of 

terminal electron accepting compounds or attribute microbiological growth towards the degradation 

of any particular pollutant, especially in cases where complex contaminant mixtures of hundreds of 

compounds exist such as in commingled plumes of fuels and coal-tars. The instantaneous reaction 

assumption may be poor for PAH contamination, of which reported half lives and retardation 

coefficients are large. Further, commingled plumes often lead to spatial variability in geochemical 

response that may not be effectively captured with analytical modeling using an instantaneous 

reaction approach. Although PAH degradation is commonly observed in laboratory settings, there 

remains uncertainty about the specific activity of PAH-degrading organisms in-situ necessary to 

verify intrinsic bioremediation of PAH pollutants (Johnsen et al., 2002; Langworthy et al, 1998; 

Padmanabhan et al., 2003). These factors complicate monitoring and decision-making at coal-tar 

impacted sites to the extent that it is difficult to interpret results from simple modeling exercises to 

quickly estimate intrinsic remediation potential with short-term or limited data sets that may 

sometimes be effective for fuel release sites. In most cases, displaying intrinsic remediation potential 

at coal-tar impacted sites requires increased monitoring efforts to deal with the added uncertainty 

about interpreting the data. 

In this study, the intrinsic bioremediation potential of a geologically complex coal-tar 

contaminated aquifer with a commingling BTEX plume is explored with a simplified lumped-

hydrocarbon geochemical mass balance approach and with analytical modeling of select pollutants 

using a superposition of solutions to account for multiple contaminant sources and a unique 

groundwater flow regime. The specific objectives of this study are to (1) show how coupled 

analytical fate and transport solutions and lumped-hydrocarbon geochemical mass balance 

approaches can be used to better support intrinsic biodégradation of coal-tar impacted systems and (2) 

identify the variability in estimated mass degradation rates that can be expected by using different 

approaches to estimating biodégradation potential. The overall goal is to demonstrate the type(s) of 

natural attenuation processes active at the site, and to estimate the rate at which contaminants may be 

degrading in-situ (second line of evidence as required by the U.S. EPA (1999)). 

3.3 FMGP Study Site 

Figure 3.1 is a plan view of the FMGP site, showing the original layout of the buildings, gas 

holder and storage tanks, coal-tar cisterns, oil tanks, and coal storage areas. The facility used the 

carbureted water gas process upon opening in 1905 until closure in 1936. Site investigations have 
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shown free-phase coal-tar source material located under the former gas-holder tanks as well as 

shallow source material exposed at the ground surface in select areas of the site shown in Figure 3.1a. 

Contaminated soils and source materials were excavated to depths not greater than the water table 

elevation in 1997 (approximate maximum excavation depth of 2.4 m). The excavations were 

backfilled with clean sand to within 0.8 m of the ground surface, then capped with a 0.6 m layer of 

clay and topped with gravel (Black and Veatch, 1998). Subsequent soil investigations near the former 

gas holder and coal tar cisterns have revealed additional coal-tar DNAPL smeared between 

approximately 3 m below ground surface to the confining glacial till, upon which a thin layer of coal-

tar may be pooling (Kjartanson et al., 2002). 

The geology underlying the FMGP site was defined using monitoring well boring data, 

percussion probing direct-push technology (DPT) soil cores, and DPT electrical conductivity probing 

at the locations shown in Figure 3.1a. The groundwater potentiometric surface was defined using 

measured groundwater elevations in monitoring wells shown in Figure 3.1b. The shallow aquifer 

system comprises the four primary geologic units shown in Figure 3.2, including a highly 

transmissive coarse alluvium (K>0.01 cm-s"1) confined in depth by glacial till and overlain by a fine­

grained silty alluvial layer and loess. At approximately 50 m down-gradient of the contaminant 

source area (underlying the FMGP site), the coarse alluvium thins significantly into a narrow band of 

fine alluvium, which extends for approximately 70 m along the hydraulic gradient, and after which 

the coarse alluvium layer thickens as the river is approached. This region of fine-grained alluvium 

has a low hydraulic conductivity (1,6xl0"4 cm s'< K < 8.6xl0"6 cm s"1) and causes a sharp decline in 

the potentiometric surface between the FMGP site and the river. Monitoring wells slightly up-

gradient of the thinned region of the alluvial layer and screened in the coarse alluvium display 

occasional flowing artesian conditions, suggesting that the groundwater in the fine-grained alluvial 

layer under the thick loess is at least semi-confined. 

Groundwater sampling was conducted in August 2001, April 2002, and November 2002 to 

characterize the aqueous geochemistry and extent of groundwater contamination. In August 2001, 

groundwater was sampled from 18 monitoring wells and at 38 additional locations using DPT. In 

April 2002, the monitoring network was expanded and groundwater was sampled from 30 monitoring 

wells and at 12 additional DPT locations. In November of 2002, the groundwater monitoring well 

network was expanded to include sampling at 13 additional wells (43 total). Figure 3.1 shows all soil 

and groundwater sampling locations. 

Groundwater was sampled by pumping from the boreholes at a flow rate not exceeding 400 

mL/min (to minimize drawdown) and monitoring the purge water using a flow-through cell, in which 
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the dissolved oxygen, pH, oxidation-reduction potential, electrical conductivity, and temperature were 

monitored at five minute intervals. Upon stabilization of the geochemical parameters, as suggested 

by Golchin et al. (1999), groundwater samples were collected and stored on ice for on and off-site 

analysis. On-site geochemical analyses were performed within two hours of sampling using 

titrimetric and spectrophotometric methods. Off-site analyses were performed in commercial 

laboratories using standard (U.S. EPA) methods. Blind duplicates and negative controls were sent to 

the laboratories for quality control. 

Figure 3.3 shows isoconcentration plots (|xg L_1) for the maximum concentrations of select 

contaminants measured in the groundwater at the FMGP site. Compounds of 4 or more rings were 

detected only within the coal tar source region of the former manufactured gas plant facility shown in 

Figure 3.1. Elevated concentrations of monoaromatic compounds and naphthalene, 1-

methylnaphthalene, acenaphthylene, and acenaphthene were observed approximately 80 m down-

gradient of the primary source region in several monitoring locations screened both in the fine­

grained alluvium and the overlying loess. This possible secondary source seems to be absent the 

heavier molecular weight compounds characteristic of coal-tars. In the early 1990s, an underground 

fuel storage tank was excavated upon closure of a non-related facility near the possible secondary 

source region shown in the contaminant contours. 

3.4 Models 

3.4.1 Stoichiometric Mass Balance 

Disappearance of TEAs or production of coupled reduced species in contaminated aquifers 

may indicate biodégradation of hydrocarbon contaminants. The use of stoichiometric relationships 

describing hydrocarbon mineralization under different TEA conditions may be useful in estimating 

hydrocarbon degradation in these contaminated systems. Based on the stoichiometry of the reaction, 

a utilization factor (UF) for each redox process equal to the molar mass of TEA consumed or 

oxidation-reduction reaction product produced per mole of contaminant degraded can be defined. 

The rate of contaminant mass destruction is thus related to the UF and the groundwater flow rate 

through the contaminated region. 

The stoichiometric terminal electron acceptor and reduced species mass balance model 

boundaries are shown in Figure 3.4. Streamlines 1 and 2 were chosen to approximately encompass 

the contaminated region. Flux boundary 1 was defined immediately up-gradient of the source region. 

Flux boundary 2 was chosen to correspond approximately to the end of the coal tar source region and 
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to match the source region defined in the 2-D reactive transport model presented below. Flux 

boundary 3 was defined at the plume extent (1 ng-L"1). Based on the hydraulic gradient (0.076 m m"1) 

and average hydraulic conductivity in the alluvial units (1.26 x 10"4 cm s"') within the plume region, 

an average Darcy velocity of 0.0082 m d"1 was estimated. Assuming groundwater flow was restricted 

to the alluvial units, a flow rate of 1.76 m3 d-1 was estimated by multiplying the Darcy velocity by the 

average cross-sectional area in the plume region between streamlines 1 and 2 (214 m2). The cross-

sectional area was estimated by dividing the volume of the aquifer in the plume region (15,900 m3 -

determined by numerical integration between top of the till surface and bottom of the loess unit) by 

the average flow length through the region (74 m). As a verification, the change in head between 

monitoring wells 4 and 16 (see Figure 3.1) was estimated to be 0.76 cm based on the average cross 

sectional area of the source region between streamlines 1 and 2 (314 m2), the average hydraulic 

conductivity of the coarse alluvium in the source region (0.049 cm s"1), and the groundwater flow rate 

estimated above (1.76 m3-d"'). This was within the observed range of 0.30 to 1.5 cm. 

Recharge of TEAs or reduced species to the source region would occur across flux boundary 

1. Recharge of these compounds to the plume region would occur across flux boundary 2. For 

simplification in modeling, it was assumed mass transfer of TEAs and reduced species across 

streamlines 1 and 2 were negligible. In the actual scenario, mass transfer of TEAs across these 

boundaries due to dispersion and molecular diffusion may result in some destruction of contaminant 

mass. 

Assuming steady-state conditions, the rate of consumption of TEAs, and thus the rate of 

degradation of contaminant mass (CyHp) in the source region, is balanced by the rate of groundwater 

recharge of TEAs across flux boundary 1 (0, and can be written: 

acceptor or production of reduced species of interest, ATE A is the mass of TEA consumed, Cfb\,tea 

is the molar TEA concentration on flux boundary 1, Csjea is the average molar source region TEA 

concentration, and Q is the rate of groundwater flow between streamlines 1 and 2. Similarly, for the 

plume region, the rate of hydrocarbon consumption can be written: 

dMs _ ACyHp = ATEA ^ (c 
dt À t UF • At 

(1) 

where is the rate contaminant mass degradation attributable to reduction of terminal electron 
dt 
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dM p ^ iS.CyH p ^ A TEA _ if! FBI,TEA C P,TEA ) Q ^2) 

~~dt ~Ât~~ UF-At~ UF 

where Cfb2,tea is the average concentration of TEA on flux boundary 2 and Cpjea is the average 

concentration of TEA in the plume. The same concept can be applied to the production of reduced 

species of oxidation-reduction reactions in the source ( Cs,rs ) and plume ( C p,rs ) regions such that: 

dM s  ^  ACyHp ^  ARS _ (Cs,fts - Cfbi,rs ) „ 

dt ^ At ~ UF • At ~ UF 

dM p  ^  AC r Hp _  ARS _ [CP,rs -CFB2,RS ) ^ 

dt  ~  At  ~UF-At~  UF 

where ARS is the mass of reduced species produced. 

Without more detailed information regarding the potential of individual components of the 

coal-tar contaminants to degrade under specific redox conditions within the aquifer (e.g. attributing 

mass TEA use towards degradation of specific contaminants), a lumped equivalent hydrocarbon 

approach was used. It has been shown that differences in the biodegradability of PAH compounds are 

related to their solubility, whereby less soluble compounds tend to be more recalcitrant in natural 

systems (Park et al, 1990; Heitkamp and Cerniglia, 1987; McGinnis et al., 1988). Therefore, a mass-

weighted average hydrocarbon based on the aqueous concentrations of individual contaminants over a 

contaminated region may provide a reasonable estimated equivalent hydrocarbon compound for mass 

balance between TEAs or reduced species and hydrocarbon mass degraded. 

Following this approach, the molar fraction of each of the 16 U.S. EPA Priority PAH 

pollutants, BTEX compounds, 1 -methylnaphthalene, and 2-methylnaphthalene were averaged over all 

groundwater monitoring locations within either (1) the contaminant source region, or (2) the 

contaminant plume region down-gradient of the source area, as shown in Figure 3.4. It was assumed 

that the monitoring wells were well distributed such that a weighting factor to decluster the data was 

not necessary. The average molar fraction of each compound was multiplied by the total number of 

carbon atoms and hydrogen atoms in the compound, respectively. The resulting equivalent carbon 

atoms and hydrogen atoms for each contaminant were summed over all contaminants to arrive at the 
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total number of carbon atoms (7) and hydrogen atoms (/?) in the equivalent hydrocarbon, C^\p. Based 

on this approach, the equivalent hydrocarbon compounds for the source and plume regions were 

determined to be C10.0H9.13, and C9 32Hg 59, respectively. 

The two regions used for this estimate represent differences in the mobility of strongly 

hydrophobic compounds such as pyrene and benzo(a)pyrene that tend to be isolated to the source 

region relative to compounds such as naphthalene and BTEX which extend further into the plume. 

These differences result in a higher molecular weight equivalent hydrocarbon in the source region 

than estimated for the plume, and allow for a better comparison of the geochemical mass balance 

model to the results of 2-D reactive transport analytical modeling of the plume region in a later 

section. 

The balanced equations for complete hydrocarbon mineralization under the six primary 

terminal electron accepting conditions for an equivalent hydrocarbon compound, C^Hp are given in 

Table 3.1. Nitrate reduction was represented as three possible reactions to account for nitrite and 

ammonium as end products as measured in situ. The stoichiometric equation for sulfate reduction 

also accounts for sulfide production, allowing a comparison of model prediction based on these two 

species. 

3.4.2 2-D Analytical Model 

Superposition of 2-D reactive transport analytical solutions (Domenico and Schwartz, 1990) 

may be used to estimate biodégradation rate coefficients of groundwater contaminants via a least-

squares fitting of monitoring well data (Stenback et al., 2004). For a constant contaminant source 

region of width Y, in a homogenous, isotropic medium with groundwater seepage velocity of vx, the 

down-gradient concentration of a contaminant at any location (x,y) and time (t) can be expressed as: 

C(x,y,t) = 
f C.  x 

V 4 y  
exp-

( x Ï 
1 - 1  +  

4Aa„ 
( 

krfc 
x - vct^J\ + 4Aax/vx 

2V^7 

erf 
y  +  y / 2  

2 jc 
-erf 

y - y / 2  

2IC 

(5) 

where Co is source concentration, x is distance in the direction of groundwater flow, y is the 

transverse distance from the plume centerline, t is zero at the time of source emplacement, vc is the 
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retarded contaminant velocity, ax is the longitudinal dispersivity, ay is the transverse dispersivity, and 

A is the overall aqueous plus solid phase first-order degradation rate coefficient (Stenback et al, 

2004). 

The retarded contaminant velocity, vc, for a given compound can be determined by dividing 

the seepage velocity by the retardation factor, R, such that: 

vx (6) 

where Ba is the soil bulk density, foc is the fraction of organic carbon in the soil, tj) is the soil porosity, 

and Koc is the organic carbon partitioning coefficient of the contaminant. For stable contaminant 

plumes, a steady-state approximation can be applied by allowing t in equation 5 to approach infinity. 

The rate of mass consumption at any time (t) can be estimated by multiplying A, by the total 

dissolved mass within the contaminated aquifer {Mr). Since the concentrations of contaminants 

vary in space, this must be performed by integrating over the volume of contaminated aquifer water 

such that: 

= ~a{Mt)= -X<j> J ^z(x,y)C(x,yJ)dydx (7) 
' * y 

where z(x,y) is the depth of the aquifer, assumed to equal the difference between the till surface and 

the bottom of the loess unit at any position (x.y). This was defined to be consistent with the 

geochemical mass balance model and derivation of average groundwater velocity. Equation 7 can be 

solved by numerical integration (grid size times concentration) over a grid covering the area of 

contamination at time (/), based on the best-fit kriged geological surfaces determined from soil 

sampling (see Figures 3.1 and 3.2), such that: 

— (8) 
ut 1 

where Aeiem is the grid size (9.94 m2) and k is the number of elements within the contaminated region. 
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Figure 3.5 shows the placement of the contaminant sources and locations of groundwater 

monitoring wells used in the model fitting procedure relative to the approximate extent of PAH and 

BTEX groundwater contamination (1 jig-I/1). The source locations, sizes, and orientations were 

selected relative to groundwater flow and the extent of the estimated source region. Twenty 

groundwater monitoring locations down-gradient of the source area were used in estimating first-

order degradation rate constants of several contaminants. Concentrations measured in nested 

monitoring wells (those with several screened intervals of varying elevation) were averaged for 

modeling purposes. Based on soil characterizations as described by Biyani (2002), the fraction of 

organic carbon, porosity, and bulk density of the aquifer system were estimated to be 0.0039, 0.32, 

and 1.8 kg/L, respectively. As suggested by Wiedemeier et al. (1999), the approximate plume extents 

were used to define the longitudinal and transverse dispersivities (10m and 2m, respectively). These 

values were held constant for modeling purposes. A transient solution was used whereby the time for 

source Yj and Y2 emplacement was set to 75 years to coincide with the MGP operations. A third 

source region, source Y3, was assumed in the model to account for a possible secondary contaminant 

source observed in groundwater measurements where a fuel storage tank was removed approximately 

15 years prior to this investigation. Only those compounds observed to be elevated in this region 

were modeled with a third source. The model was fitted to the site data by varying the overall 

degradation rate coefficient, A, and the three source concentrations, Yt, Y2, and Y}, within a range of 

concentrations observed within the source region. Linear, reversible, and homogenous sorption was 

assumed for simplicity, although PAH compounds may exhibit non-linear and irreversible isotherm 

behavior that may vary with time, location, and competition among contaminants for sorption sites 

(see Allen-King et al., 2002),. Irreversible sorption of contaminants or sorption hysteresis in the 

actual aquifer would manifest in a larger overall degradation rate coefficient estimated by the 

analytical solution than the actual aquifer degradation rate coefficient. 

3.5 Results and Discussion 

3.5.1 Geochemical response to contamination 

Figures 3.6-3.9 are isoconcentration plots and centerline transects of common TEAs and 

reduced species observed in contaminant plumes. Shown are average concentrations measured at 

sampling locations along the jagged transect A-A' over the three sampling events (August 2001, April 

2002, and November 2002) and the values of the kriged surface along the straight transect A-A' 
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reported in the isoconcentration plots. Transect A-A' begins approximately 30 meters up-gradient of 

the coal-tar source region to include background groundwater values. Table 3.2 shows the 

concentrations of TEAs and key water quality parameters measured in groundwater sampled from 

select uncontaminated background and contaminated monitoring wells (average values) and DPT 

locations (one-time measurements). 

As can be seen in Figure 3.6, the dissolved oxygen depletes rapidly within the contaminant 

source region and remains generally below 1 mg/L within the contaminant plume (see Table 3.2). 

The ORPs measured in the groundwater reflect well the measured dissolved oxygen, except at a 

location approximately 100 m along transect A-A'. Up to and at this location, the ORP is in a 

condition of rebound as dissolved contaminants from the FMGP source region are declining. The 

ORP drops again over the next 15 m into the region of the possible secondary source. The 

inconsistency between the ORP and dissolved oxygen may be due to a relatively slow recharge of 

dissolved oxygen from the groundwater-soil gas interface. Although little evidence of contamination 

close to the river exists, the ORP and dissolved oxygen remain low through the remainder of the 

transect. This is likely due to the depths at which the groundwater was sampled (approximately 12 

m) and subsequently low oxygen penetration into the aquifer. 

Figure 3.7 supports the occurrence of nitrate reduction within the contaminated source region. 

A large reduction in nitrate is coupled to a significant elevation in nitrite and ammonium, which 

attenuate once the nitrate is consumed. Based on background groundwater measurements which 

consistently result in nitrate concentrations of 13-16 mg/L at three monitoring well locations (e.g., 

MW4 in Table 3.2) as well as several one-time direct-push groundwater sampling locations), nitrate 

may play a key role in microbial degradation of the coal-tar constituents at this site. Delineation 

between nitrate consumed as a terminal electron acceptor and nitrate consumed for microbial growth 

could not be established but would have the net effect of reducing nitrate-reduction. 

Figure 3.8 shows total dissolved iron and manganese. The oxidized forms of these metals are 

relatively insoluble, therefore changes in total dissolved metals are strongly influenced by the reduced 

forms. Based on the increased soluble metals concentrations, there may have been significant metal 

reduction near the coal-tar source. It is unclear why the less energetically favorable iron (III) 

reduction occurred prior to the more favorable manganese (IV) reduction in this aquifer. However, it 

may be related to local differences in availability of oxidized iron or manganese. Differences in local 

soil mineralogy may also explanation secondary peaks in soluble metals observed in groundwater 

sampled from wells past the contaminant plume. 
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Groundwater concentrations of sulfide that were significantly higher than background, 

coupled with hydrogen sulfide odors from groundwater samples collected in this region indicate 

sulfate reduction. Figure 3.9 shows the measured sulfate and sulfide concentrations along transect A-

A'. Sulfide production was coupled to a drop in measured groundwater concentrations of sulfate in 

the possible secondary source region (see GMW 13 in Table 3.2). The lighter hydrocarbons observed 

in this region (BTEX, naphthalene, etc.) have been shown to degrade under sulfate-reducing 

conditions by several researchers (e.g., Coates et al., 1996; Galushko et al., 1999; Hayes and Lovley, 

2002). Standard heterotrophic plate counts confirm biological growth in this region of the plume (see 

Table 3.2, MW13). 

Extensive spatial heterogeneity can be seen in the hydrogeochemical response to the coal-tar 

and BTEX contamination. Spatial and temporal heterogeneity was also observed in standard 

heterotrophic plate counts across the contaminated aquifer. This level of heterogeneity is very 

difficult to resolve in analytical fate and transport models, and would violate instantaneous reaction 

assumptions. Numerical approaches to estimating degradation rates based on mass balance 

approaches may be more realistic to these types of scenarios. Standard heterotrophic plate counts per 

milliliter and 95% confidence intervals within the source, plume, and background regions (average of 

all monitoring locations in these regions) were 2008 ±235 (n=21), 1905 ±373 (n=23), and 429 ±174 

(n=28), respectively, suggesting microbial growth within the contaminant source region and plume, 

and support intrinsic remediation potential. Methane production was not detected within this aquifer 

system (Black and Veatch, 1998). 

3.5.2 Stoichiometric Terminal Electron Acceptor Mass Balance 

Table 3.3 shows the results of the stoichiometric mass balance approach. Nitrate reduction 

was computed both under the assumption of complete denitrification and with the end products nitrite 

and ammonium. Mass consumption under sulfate reducing conditions was determined using both 

sulfate loss and hydrogen sulfide production for comparison. Based on the results presented in Table 

3.3 and a groundwater flow of 1.76 m3/d through the source region and contaminant plume, 

microbially-mediated reactions may be responsible for the destruction of 4.5 kg of contaminant mass 

per year. 
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3.5.2.1 Source region 

97.8% of the transformed contaminant mass in the source region based on consumption of 

terminal electron accepting compounds was attributable to reduction of oxygen and nitrate (17.7% 

and 80.1%, respectively). Although regions of metal reduction (iron and manganese) are apparent 

based on groundwater measurements, metal reduction was attributable to only a small fraction of 

potential contaminant mineralization (2.2%, total). Sulfate concentrations increased in the source 

region relative to the background groundwater on flux boundary 1. This may be related to a single 

low sulfate concentration measurement in the one time groundwater sample GPW17 (see Figure 3.9). 

Geochemical evidence of sulfate reduction in the form of hydrogen sulfide production was not 

observed in this region. 

3.5.2.2 Plume region 

Rapid consumption of oxygen and nitrate in the source region resulted in low concentrations 

at flux boundary 2. Higher average concentrations of these TEAs in the plume region than on flux 

boundary 2 were observed, possibly due to rebounding near the plume fringes. Consequently, net 

mass degradation attributable to nitrate-reduction or aerobic oxidation in the plume region could not 

be established based on equations 1 and 2. Similarly, the relatively high concentration of soluble 

metals on flux boundary 2 compared to the average concentration of metals in the plume region 

resulted in no calculated mass degradation due to metal reduction. This indicates one weakness of 

this approach, in that it does not account for flux of TEAs across the model boundaries 

(infiltration/diffusion across the air-water interface or diffusion/dispersion across streamlines 1 or 2). 

Given that dissolved oxygen and nitrate are present at low concentrations within the plume, aerobic 

respiration and nitrate reduction likely occur to some degree. Iron and manganese reduction may be 

reasonable, as secondary peaks in ferrous iron and manganese (II) occur in the post plume region (see 

Figure 3.8). By measuring complete redox couples (i.e. sulfate and sulfide or nitrate and nitrite), 

some of the model limitations with regards to TEA flux across the model boundaries may be negated. 

For instance, a secondary peak in ammonium within the plume region resulted in elevated ammonium 

concentrations relative to flux boundary 2 (see Figure 3.7 and Table 3.3) allowing for estimation of 

nitrate reduction to ammonium in the plume region. However, some redox couples can only be 

monitored with aqueous measurements in the oxidized or reduced states. 

The presence of hydrogen sulfide in the plume region shown in Figure 3.9 and Table 3.3 was 

associated with redox potentials as low as -247 mV (measured at GMW 20, HS" = 0.65 mg/L) 

indicating that sulfate-reduction may be the primary redox process in the contaminant plume region. 
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Table 3.3 shows reasonable agreement between degradation of contaminants based on changes in 

sulfate and hydrogen sulfide. However, the distribution of these species in the contaminant plume 

region should be spatially correlated and inversely related. The spatial heterogeneity in sulfate 

concentrations without coupled changes in hydrogen sulfide (e.g. GPW 17) make correlation between 

these species poor (see Figure 3.9). Large concentrations of sulfate coupled with natural variability in 

the measurements and the precision of the analytical techniques may mask the use of sulfate as a 

TEA. For instance, the calculated difference in sulfate concentration between flux boundary 2 and 

the plume region is 3 mg-L"1, less than 2.2% of the concentration on flux boundary 2 (137 mg-L"1). 

Use of more sensitive redox species such as hydrogen sulfide may be more appropriate for mass 

balance approaches. 

3.5.3 2-D Analytical Modeling 

Table 3.4 shows the best-fit degradation rate coefficients (A)  and source concentrations (C„,/, 

C0,2, and C0j) of the superimposed analytical solutions for several BTEX and PAH compounds as 

determined using the Solver package in Microsoft® Excel. Also shown in Table 3.4 are the sum of 

squares of the errors (SSE) between measured and modeled concentrations over all twenty sampling 

locations and the correlation coefficient describing the goodness of fit of the model to the actual data 

(r2). In general, a high r2 value indicated the overall goodness of fit of the modeled concentrations to 

the measured concentrations, whereas the SSE was particularly sensitive to the goodness of fit of 

individual monitoring locations. An SSE of 1000 would indicate that the total difference between the 

measured and modeled concentrations at all 20 monitoring locations was less than 32 ng-L"1. Care 

should be exercised in interpreting the goodness of fit, as it may be strongly influenced by large 

concentrations in a select few monitoring locations. Model fitted concentrations agreed well to 

measured site data for most compounds (SSEdOOO and r2 > 0.99). 

The best-fit degradation rate coefficients of the superimposed analytical solutions varied 

between 1.3 x 10"5 d"1 (phenanthrene, R/= 308) to 8.4 x 10"3 d"1 (benzene, Rf = 2.6), and agreed 

favorably to those presented by others (see Chapter 2). In the case of phenanthrene, the degradation 

rate is low enough to assume that the extent of the plume can be explained without degradation. For 

naphthalene, an average measured concentration of 144 |ig-L"' at GMW 17 (see Figures 3.1b and 

3.3d) could not be explained by the model (best-fit concentration = 16 ^g L'). In fitting this 

monitoring well, the model over-predicts the concentration of two nearby monitoring wells by 42 

Hg-L"1 and 60 ng'L"1, respectively, by forcing a large concentration at source Yt, explaining the large 
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SSE of 21800. GMW 17 is located directly adjacent to several above ground fuel storage tanks and a 

refueling location for gasoline trucks. Elevated concentrations of several BTEX compounds have 

also been observed in this monitoring well (see Figure 3.3). 

Also presented in Table 3.4 are the mass transformation rates within the contaminant plume 

as determined by numerical integration (see eq. 8). The mass transformation rates for both the source 

region and plume region were determined for direct comparison to the lumped-hydrocarbon 

geochemical mass balance model. However, since A was determined in the plume region, which is 

low in dissolved oxygen and nitrate, its application to contaminant mass transformation in the source 

region where considerable aerobic respiration and nitrate reduction are occurring may be 

questionable. It is expected that the rate of mass transformation in the source region would be larger 

than the plume region, as was evidenced in the lumped-hydrocarbon geochemical mass balance 

model approach. Based on these two approaches, the magnitude of mass transformation in the source 

region ranged between 46-90% of the total mass transformation. These results highlight the need for 

more reliable alternatives to estimating degradation rates through reactive transport modeling for 

determining mass transformation in source regions. The total mass transformation rates (sum of all 

modeled compounds in the source and plume regions) presented in Table 3.4, however, compared 

well (same order of magnitude) to the transformation rates determined through the geochemical mass 

balance (see Table 3.3). 

Differences in the results of the two mass transformation estimates in the plume region may 

be due to errors inherent to either modeling approach. For instance, transformation and loss of HS ̂  

to H2S(g) from the groundwater would lower the stoichiometric estimate of mass degradation rate in 

the mass balance model. The lack of the ability to quantify mass degradation due to consumption of 

TEAs as they are recharged into the contaminant plume through the streamline boundaries or air-

water interface may further lower the mass transformation estimate. Mass loss to irreversible sorption 

or phase change of PAH contaminants in the aquifer would result in overall degradation rate 

coefficients (A) that are large compared to actual biodégradation rate coefficients. This would result 

in artificially inflated mass transformation rates based on equation 8. By summing the mass 

transformation rate of only a relative few select pollutants, however, it could be expected that this 

method may provide a conservative estimate of overall mass transformation rate. In this study, the 

lumped-hydrocarbon geochemical mass balance model provided a more conservative estimate of 

overall contaminant mass transformation rate compared to analytical modeling approaches. This 

suggests that the effects of processes such as contaminant phase change and sorption hysteresis may 

influence degradation rates fitted by models of the fate and transport of PAHs under the assumptions 
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used in this exercise. However, the results were within the same order of magnitude, and show the 

utility of using a combination of simple lumped-hydrocarbon geochemical mass balance approaches 

and superposition techniques with the 2-D reactive transport analytical solution in systems of 

complex geology and possible multiple sources. 

3.6 Conclusions 

The FMGP site of this study is located approximately 200 m up-gradient a nearby river. 

Based on groundwater monitoring, contamination emanating from the site and a potential secondary 

contaminant source identified approximately 80m down-gradient of the coal-tar source region have 

not impacted the river. Assuming source concentrations and degradation rate coefficients were to 

remain infinitely the same (steady-state assumption), reactive transport modeling would suggest that 

some compounds may eventually reach the river. However, infinite source assumptions may lead to 

over-prediction of contaminant plume extents. Further investigation into source term development 

(including total mass and potential for phase change) and a more detailed study of attenuation 

potential are required to yield a more reliable prediction of contaminant plume front migration. 

Geochemical and biological evidence at the FMGP site suggest microbially-mediated 

reactions active within the contaminated region. Evidence includes reduction of available TEAs 

(dissolved oxygen, nitrate, and sulfate) and production of coupled reduced species (nitrite, 

ammonium, ferrous iron, manganese (II), and hydrogen sulfide) within the contaminated aquifer 

relative to the background groundwater. This was coupled with associated microbial growth as 

evidenced by standard heterotrophic plate counts in the contaminant source and plume region relative 

to background heterotrophic plate counts. 

Mass balances based on loss in terminal electron accepting compounds or production of 

reduced species produced estimates of the potential biodégradation of 4.1 kg/yr contaminant mass in 

the source region and 0.46 kg/yr contaminant mass in the resulting plume. The results of the mass 

balance exercise indicated that oxygen and nitrate availability may limit intrinsic bioremediation in 

this system. A superposition of three 2-D Domenico and Schwartz (1990) analytical solutions were 

used to estimate degradation rate coefficients of specific compounds measured within the 

contaminant plume. Using numerical integration techniques and these coefficients, the overall 

contaminant mass transformation rates were determined to be 1.7 kg-yr"1 in the source region and 2.0 

kg-yr"1 in the contaminant plume. These values compared well (within an order of magnitude) to the 

geochemical modeling presented above. The differences may be related to several errors including 
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analytical error in measuring hydrogeochemical parameters in situ, spatial heterogeneity of TEAs and 

reduced species in the aquifer system, numerical error introduced within the modeling techniques, or 

overestimation of degradation rate coefficients due to relaxing the analytical model relative to 

contaminant phase change and sorption hysteresis. 

Further studies on the intrinsic biodégradation potential of site soils under different terminal 

electron accepting conditions using lab-scale bioassays may be necessary to verify whether the 

measured reduction of TEAs within the contaminant source region and plume relative to the clean 

background aquifer are due to degradation of the specific compounds of interest, or are artifacts of 

other components of the fuel mixture. The site microbial community structure and function related to 

the degradation of specific compounds have not been identified, but would provide much more 

reliable evidence of intrinsic bioremediation potential. However, this work is significant in that it 

shows that it is possible to couple a superposition of reactive transport analytical solutions with a 

terminal electron acceptor mass balance approach to estimate contaminant depletion in a 

hydrogeologically (variable groundwater flow direction) and chemically complex (commingled 

plumes) contaminated system, providing estimates of contaminant mass reduction rates and evidence 

valuable towards evaluating the intrinsic remediation potential of coal-tar impacted aquifers. 
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Table 3.1 Balanced stoichiometric equations for complete mineralization of an equivalent hydrocarbon compound CjHfi 

TEA Condition and Stoichiometric Relationship 

Aerobic Oxidation 
( + (y f 0.25p)02 —> )C02 + 0.5 PH20 

Nitrate Reduction 

to ammonium: C y H p  + (0.5y + 0.125p)NO; + (y + 0.250)H+ + (0.5/-0.375p)H20 -> yC02 + (0.5/ + 0.125p)NH +
4  

t o  n i t r i t e :  C y H p  + (2y  + 0 .50)NO;  -> yC0 2  + (2y  +  0 .5  P )n0 2  + (0 .5p)H 2 0  

denitrification: CyHp + (0.8y + 0.20}NO^ + (0.8y + 0.2—> yC02 + (0.4y + 0.10}N2 + (0.4/ + 0.60)H2O 

Mn(IV) reduction 

C r H p  + (2y  +  0 .5p)Mn +  + 2yH 2 0  ?C<92 + (4/ + y9)/T + (2Z + 0.5 p)Mn2+ 

FeÇIII) reduction 
C y Hp + (Ay  +  p)Fe 3 +  + 2yH 2 0  -> )C0 2  + (Ay  +  0)H +  + (Ay  +  /3)Fe 2 +  

Sulfate Reduction 
C Y H p  + (0.5/ + 0.125 p)SOl~ + (0.75 y + 0.18750)H+ -» }C02 + (0.25/ + 0.06250)H2S + (0.25/ + 0.0625p)HS~ + 0.5 pH20 

Methanogenesis 
+(/-O.250)H2O ->(0.5y-0.\25p)C02 +(0.5y + 0A25p)CH4 
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Table 3.2 Measured groundwater characteristics 

Analyte (Units) Monitoring Well: MW 4 MW 11 MW 5 GMW 15 GMW 13 
Location: up-gradient down-gradient source plume 2nd source 

Screen Length(s): 3.05 m 1.52 m 3.05 m 1.22 m 1.22 m 
Screen Midpoint: 354.84 m msl 345.34 m msl 357.14 m msl 354.1 m msl 353.0 m msl 
Screen Midpoint: 352.35 m msl 352.3 m msl 350.2 m msl 

Inorganics/Nutrients (mgL') 
Calcium 147 208 219 170 204 

175 150 72 
Magnesium 40.4 56 40.3 46 56 

44.3 40 19 
Sodium 59 59.7 26.4 48 302 

77 100 231 
Potassium 4.2 3.7 4.7 4.2 3.2 

3.4 2.6 5.4 
Ferrous Iron 0.01 0.88 0.07 0.31 0.81 

1.18 2.28 0.37 
Total Iron 0.01 1.8 0.02 0.35 1.30 

1.37 2.29 0.34 
Total Manganese ND 1.32 1.48 1.25 0.35 

1.78 1.60 0.23 
Chloride 124 136 32.3 83.2 280 

126 141 100 
Sulfate 135 165 208 175 110 

158 138 140 
Sulfide 0.004 0.001 0.009 0.005 0.001 

0.003 0.003 1.00 
Nitrate+Nitrite (as N) 15.3 0.4 3.5 0.31 0.41 

6.0 0.20 1.02 
Nitrite (asN) 0.007 0.02 0.021 0.005 0.006 

0.58 0.005 0.026 
Ammonium (as N) ND 0.06 0.01 0.05 0.40 

0.01 0.03 0.36 
Total Phosphorus ND 0.12 ND"' ND 0.19 

ND ND 0.26 
Ortho-Phosphate ND ND ND .b- 0 

ND - 0.3 
Total Hardness (as CaC03) 586 822 703 627 850 

551 526 273 
Alkalinity (as CaC03) 298 484 434 405 802 

400 428 287 

Water Quality Parameters 
Dissolved Oxygen (mgL"1) 6.1 1.2 0.3 0.25 0.49 

r 0.26 0.7 
Temperature (°C) 11.7 11.1 11.7 10.1 12.8 

t 10.9 14.4 
PH 7.07 6.85 7.1 6.96 7.02 

t 7.16 -

Electrical Conductivity 1100 1320 1160 1298 2250 
(liScm'1) t 1421 1870 
Redox Potential (mV) 66 -6 3 -17 -16 

t -87 -

Turbidity (NTU) 5.3 2.5 4.12 13.7 4.8 

t 14.2 -

Bacterial 
Plate Count (CFUmL1) 172 69 1 ND 440 

5510 2 18000 

a. ND = not detected, b. " - " = data not available, c. f = Coal tar in the purge water, readings not collected 
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Table 3.3 Estimated biodégradation of contaminants in the source area and plume based on consumption of terminal electron 
acceptors or production of reduced species. 

Redox Process Source Region 
(C10.04H9.13) 

Plume Region 
(C9.32Hg.59) 

Total 

CFBI Cs UF 

dt 
CfB2 Cp 

UF 4M, 

dt 

dMr  

dt 

(mg-L"1) (mg-L"1) (gm-d"1) (mg-L"1) (mg-L"1) (gm-d"1) (gm-d"1) 

Aerobic oxidation (A02): 5.32 1.91 12.3 1.97 1.29 1.53 11.5 NA»' 1.97 

Nitrate reduction 

to ammonium (ANH/): 0.046 0.126 6.16 0.213 0.090 0.209 5.73 0.313 0.526 

to nitrite (ANO{): 0.001 0.197 24.6 0.130 0.029 0.012 22.9 NA 0.130 

denitrification (ANO{ - ANH/ - AN02~): 10.7 5.53 9.86 8.55 0.605 0.884 9.17 NA 8.55 

Assuming only denitrification (ANOf): 10.7 5.25 9.86 9.01 0.605 0.765 9.17 NA 9.01 

Manganese reduction (AMnz+): 0.239 0.990 24.6 0.126 1.78 0.782 22.9 NA 0.126 

Iron reduction (AFe2+): 0.718 2.08 49.3 0.113 2.36 1.45 45.9 NA 0.113 

Sulfate reduction 

based on sulfate (ASO/~): 118 140 6.16 NA 137 134 5.73 1.15 1.15 

based on sulfide (AHS~) 0.007 0.004 3.08 NA 0.001 0.422 2.87 0.941 0.941 

Total Mass Transformation Rate: 
11.1 1.25 12.4 

a. NA = Not applicable, difference in concentration of terminal electron acceptor is positive or reduced species is negative relative to influx 
concentration. 
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Table 3.4 2-D non-steady- and steady-state first-order degradation coefficients estimated by analytical modeling 

Compound Co,I C-,2 Co,3 Rf A"' SSE i* Mass Transformation Rate 

Total Source Plume 
Region Region 

0ig'L"1) (M-g'L"1) (Hg-L"1) (d"1) (gm-d"1) (gm-d"1) (gm-d'1) 

Benzene 2200 870 3000 2.6 0.0084 33 1.000 2.6 0.92 1.7 
Ethylbenzene 1700 0 600 12 0.0076 170 0.999 0.71 0.39 0.32 
Xylenes 1000 540 280 6.2 0.0057 5.5 1.000 1.3 0.53 0.76 
Naphthalene 6900 0 130 29 0.0058 21800 0.994 3.0 1.6 1.4 
Acenaphthylene 450 850 170 56 0.00069 76 0.999 0.24 0.11 0.13 
Acenaphthene 110 490 130 98 0.0011 280 0.952 0.79 0.028 0.052 
Fluorene 120 160 158 0.0058 1.7 0.998 0.29 0.18 0.11 
Phenanthrene 320 320 308 <0.0001 34 0.988 NA NA NA 
1-Methylnaphthalene 990 880 270 56 0.0042 770 0.995 1.7 0.79 0.92 

Total Mass Transformation Rate 9.89 4.56 5.33 

a. Source and plume regions as defined in Figure 3.4. 
b. NA = not applicable, mass transformation rate <0.001 gm-d"1 



www.manaraa.com

103 

A*—Coal Holdt 

:ormer Gas Plant Building 

Oil Tank 

(2^4— Gas Holder 
Former Gas Storage Tdnks 

Coal Tar Cisterns-

Exposed coal tar 
removed during source 
material excavation 

Above ground petroleum 
storage tanks a (id fuel 
truck refilling ! 
station 

a. 

Locust Street 

17 x. 

Beech Street 'GMW 1i 

GMW 15l<xx * GMW 13 

Legend GMW 17 r GMW 20 

o 5 cm diameter monitoring well 

o 2.5 cm diameter monitoring well 
% one-time groundwater sample 
* soil core 
<& Electrical Conductivity 

MW11C 

Scale: 

100 

b. 

Figure 3.1 FMGP site plan view. a. Soil sampling and electrical conductivity direct-push 
locations. Insert shows the original site structures and area of exposed coal tar 
prior to source soil removal, b. Groundwater sampling locations. Select 
monitoring locations relevant to Table 3.2 are indicated. 
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Geologic Unit Hydraulic 
Conductivity 

(cm/s) 

Organic Carbon 
Content 

(A) 
Loess 1 6 x 10 5 - 8 .4 x 10 5 

Fine-Grained Silty-Alluvium 2 4 x 10-5 - 1.6 x 10-4 

Coarse Alluvium 7.9 x 102 - 1.0 x 10 2 

Glacial Till not measured 

0.026 - 0.039 
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Approximate region of thinning in coarse alluvium 
and intrusion of low hydraulic conductivity — 
loess and fine-grained silty alluvium 
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Groundwater potentiometric surface contours (meters above mean sea level) in plan view, and geological profile along 
cross-section D-D'. Circles indicate the groundwater monitoring locations. The approximate region of intrusion of 
low-hydraulic conductivity soils into the coarse alluvium is indicated. 
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Beech Beech 

Beech Beech 

Figure 3.3 Groundwater contaminant concentration contours (fig'L1) for (a) Benzene, (b) 
Xylenes (total), (c) Naphthalene, and (d) Acenaphthylene. Small circles indicate 
groundwater sampling locations. 
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Flux Boundary 1 

Flux Boundary 2 

Beech Street 

Flux Boundary 3 

sP 

Streamline 2 

Q = 1.76 m3/d 
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/ Region/ i 

Plume 
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Streamline 1 

Figure 3.4 Stoichiometric terminal electron acceptor and reduced species mass balance 
model boundaries. The estimated extent of the contaminant source region (dark 
gray) and dissolved-phase contaminant plume (light gray, 1 pg-L"1) are shown 
relative to the model source and plume regions. 
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/Approximate extent of 
coal-tar source material 

Beech Street 

?^Approximate plume extent 
 ̂(PAH and BTEX, 1 pg L"1) 

Figure 3.5 2-D reactive transport analytical solution source placement and monitoring well 
locations. Yi, V2, and Y3, indicate model source locations. Groundwater 
monitoring locations are also indicated (o). 
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Figure 3.6 Isoconcentration contours for (a) dissolved oxygen and (b) redox potential, 
ORP. (c) Dissolved oxygen and oxidation reduction potential along transect A-
A\ Data points represent measured groundwater values at locations indicated 
on the jagged transect. Smoothed lines represent the best-fit kriged surface 
along transect A-A' using the Surfer® Software package (Golden Software). 
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Figure 3.7 Groundwater contours for (a) nitrate and (b) nitrite, (c) Nitrate, nitrite, and 
ammonium along transect A-A'. Data points represent measured groundwater 
values at locations indicated on the jagged transect. Smoothed lines represent 
the best-fit kriged surface along transect A-A' using the Surfer® Software 
package (Golden Software). 
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Figure 3.8 Groundwater contours for (a) total dissolved iron and (b) total dissolved 
manganese, (c) Total iron and total manganese along transect A-A'. Data 
points represent measured groundwater values at locations indicated on the 
jagged transect. Smoothed lines represent the best-fit kriged surface along 
transect A-A' using the Surfer® Software package (Golden Software). 
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Figure 3.9 Groundwater contours for (a) sulfate and (b) sulfide, (c) Sulfate and sulfide 
along transect A-A'. Data points represent measured groundwater values at 
locations indicated on the jagged transect. Smoothed lines represent the best-fit 
kriged surface along transect A-A' using the Surfer® Software package (Golden 
Software). 
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4. SPATIAL HETEROGENEITY IN MICROBIAL COMMUNITY STRUCTURE, 

GEOCHEMISTRY, AND MINERALIZATION OF PAH COMPOUNDS IN A COAL-

TAR IMPACTED AQUIFER: IMPLICATIONS FOR INVESTIGATING INTRINSIC 

BIOREMEDIATION 

A paper to be submitted to Applied and Environmental Microbiology 

Shane W. Rogers, Say Kee Ong, and Thomas B. Moorman 

4.1 Abstract 

The microbial community structure and mineralization of select PAH compounds in aquifer 

sediments originating from a coal-tar distillate plume of varying geochemical composition were 

investigated spatially using total direct microbial counting and whole-cell hybridizations, incubations 

with site sediments under select redox conditions exhibited in situ, and whole-cell hybridizations 

coupled with microautoradiography (MICRO-FISH). Total DAPI counts in the coal-tar source region 

reached 1.45 x 107 organisms per gram sediments, three orders of magnitude greater than DAPI-

stained cell counts in the non-affected sediments, suggesting active growth on the coal-tar 

constituents in situ. Mineralization of [UL-14C]naphthalene in incubations under anaerobic nitrate-

amended conditions averaged 1.49 ± 0.18% over the course of 43 days with no apparent lag in 

sediments associated with in situ nitrate-reduction. Similarly, mineralization of naphthalene under 

anaerobic sulfate-amended conditions was observed with no apparent lag (1.5 ± 0.07%, 23 days) in 

sediments associated with groundwater hydrogen sulfide concentrations as high as 2.5 mg-L"1 and 

oxidation reduction potentials as low as -247 mV. Sulfate-reducing bacteria comprised as much as 

37% of the in situ microbial community structure in these sediments. Mineralization of naphthalene 

(2.24 ± 0.32%, 22 days) and [9-14C]phenanthrene (2.05 ± 0.41%, 22 days) under iron-reducing 

conditions was observed with no apparent lag, but did not correlate well to in situ aqueous 

geochemical indicators of iron-reduction. Based on whole cell hybridizations on site sediments, 

Actinobacteria dominated the aerobic (>1 mg/L dissolved oxygen) in situ microbial community 

structures, followed by y-Proteobacteria, Bacter iode tes, and /3-Proteobacteria. Under aerobic 

conditions, up to 61% mineralization of naphthalene and 42% mineralization of phenanthrene was 

observed. Enrichment of J3- and y-Proteobacteria in the microbial community structures of site 

sediments following aerobic incubations indicated that they were active in PAH degradation. 
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MICRO-FISH confirmed these results but also indicated that Actinobacteria were active in the uptake 

of [9-14C]phenanthrene, even though their populations declined in aerobic incubations. These results 

supported in situ observations of the microbial community structure, but suggested that inference of 

the activity of specific bacterial phylotypes in the uptake of PAH pollutants based on perturbation in 

laboratory incubations versus in situ microbial community structures alone may not be robust, and 

may lead to erroneous conclusions about the activity of PAH-degrading bacteria in situ. MICRO-

FISH also supported the works of others in that most bacteria capable of aerobic mineralization of 

PAH compounds reported in literature cluster within specific phylotypes including the 

Actinobacteria, a-, (5-, and y-Proteobacteria. The results of this study strongly support active natural 

attenuation of PAH compounds within this contaminated aquifer and suggest that direct evidence of 

intrinsic degradation of PAH pollutants is necessary to effectively demonstrate natural attenuation at 

complex PAH contaminated sites. 

4.2 Introduction 

Polycyclic aromatic hydrocarbon (PAH) contamination is a common environmental challenge 

found at creosote works, coal gasification sites, coking industries, and petroleum refineries. Remedial 

efforts at PAH-contaminated sites are typically costly as PAHs tend to be associated with dense 

nonaqueous phase liquids that persist as residual contamination, coating soils surfaces and pooling on 

impermeable layers deep in aquifer systems making free product recovery difficult, and providing a 

long-term source of groundwater contamination. All 16 U.S. EPA Priority PAH compounds are 

susceptible to aerobic biodégradation in laboratory studies, and many PAH-contaminated sites exhibit 

changes in geochemical environments commonly associated with increased microbial activity and 

intrinsic bioremediation (EPRI, 1996; King et al., 1999; Campbell et al., 1996; Landmeyer et al., 

1998; Ong et al., 2001). Recent research showing biodégradation of low-ring PAHs in anaerobic 

incubations of contaminated harbor, estuarine, and aquifer sediments supports monitored natural 

attenuation as a remedial approach at PAH-contaminated sites (Bedessem et al., 1997; Coates et al., 

1997; Zhang and Young, 1997; McNally et al., 1998; Andersen and Lovley, 1999; Galushko et al., 

1999; Meckenstock et al., 2000; Rockne et al., 2000: Hayes and Lovley, 2002). For natural 

attenuation to become a viable remedial option, a better understanding of the capacity of indigenous 

microbial consortia to transform PAHs into innocuous byproducts must be realized. 

Our current knowledge of the biodiversity of PAH contaminated soils and sediments is 

largely derived from the isolation and cultivation of microorganisms capable of degrading PAH 
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compounds. These culture-dependent techniques may allow the study of only a small fraction of the 

biodiversity present in natural systems (Amann et al., 1995; Atlas and Bartha, 1992). Therefore, 

current information regarding the genotypic and phylotypic diversity of PAH-degrading organisms 

may be biased by limitations of cultivability, and the natural metabolic activity of PAH-contaminated 

systems may be underestimated (Ahn et al., 1999; Lloyd-Jones et al., 1999; Widada et al., 2002). 

Furthermore, extensive spatial and temporal heterogeneity in the aqueous geochemistry and microbial 

community structure at many PAH-contaminated sites may complicate modeling and monitoring 

efforts when investigating natural attenuation as a potential remedial mechanism (Langworthy et al, 

1998). 

The U.S. EPA recommends a three-tiered approach to evaluate natural attenuation as a 

remedial mechanism for contaminated sites. This approach primarily relies on historical data 

displaying a clear and meaningful trend of decreasing contaminant mass, which is supported by 

indirect measures of intrinsic remediation, such as changes in the geochemical environment 

potentially related to biodégradation of pollutants, coupled with modeling approaches to estimate the 

rate at which the pollutants will be reduced to required levels (U.S. EPA, 1999). Although plume-

scale modeling may lead to reasonable estimates of the overall rate of hydrocarbon degradation, the 

potential for specific hydrocarbon degradation within complex mixed contaminant plumes typically 

associated with PAH pollution cannot be accurately assessed from plume-scale data. For instance, 

the consumption of any particular pollutant within a chemically complex mixed source may elicit a 

particular geochemical response(s). Further, potential analytical errors associated with groundwater 

sampling coupled with the heterogeneous nature of most aquifers may lead to misinterpretation of 

site-data that result in incorrect deductions regarding the transformation of pollutants to innocuous 

byproducts based on modeling studies. For this reason, the U.S. EPA suggests tertiary lines of 

evidence based on field or microcosm studies that directly demonstrate microbial activity in the 

aquifer material and its ability to transform the contaminants of concern (U.S.EPA, 1999). However, 

laboratory-scale assays with contaminated site media typically result in an altered (enriched) 

microbial community structure that may not accurately reflect in-situ conditions. Therefore a gap 

exists between interpreting results from microcosm studies and field-scale processes. Studies that 

have employed molecular microbial approaches such as those performed by Langworthy et al (1998), 

Padmanabhan et al. (2003), and Eriksson et al. (2003), linking laboratory microcosm data to the field-

scale, are needed to better assess intrinsic bioremediation potential at PAH-contaminated sites. 

One approach to linking laboratory microcosm and field-scale data is to identify 

phylotypically or genotypically relevant microorganisms based on laboratory microcosms with site 
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soils or sediments, then probe for the presence of those organisms in-situ. Johnsen et al. (2002) noted 

that PAH mineralization in soil was dominated by bacteria in a limited number of taxonomic groups 

including nocardioforms, sphingomonads, Burkholderia, pseudomonads, and Mycobacterium. A 

more extensive review of several studies reveals a high degree of relatedness between PAH-degrading 

bacteria isolated from soils and sediments globally (see Table 4.1). PAH-degrading bacteria tend to 

cluster within specific phylotypes, even though the genes that encode for enzymes related to PAH 

degradation in many cases are plasmid-borne and transposable. This suggests that other phenotypic 

characteristics such as cell hydrophobicity or the ability to produce biosurfactants may be equally 

important to displaying the PAH-degrading phenotype as the availability of specific genetic elements 

the environment. However, it may also be that specific phenotypic characteristics lead to 

cultivability, thus culture techniques do not fully capture the suite of organisms capable of degrading 

PAH compounds in the environment. The phylotypic relatedness displayed by PAH-degrading 

bacteria suggests that specific molecular probe sets may be useful for tracking the presence of PAH-

degrading bacteria in complex systems. As can be seen from Table 4.1, aerobic PAH degrading 

bacteria cluster phylotypically within the a-Proteobacteria, /3-Proteobacteria, y-Proteobacteria, and 

Actinobacteria. However, some Firmicutes and Flavobacterium species have been reported to 

aerobically degrade PAHs. The select few denitrifying bacteria that degrade PAH compounds cluster 

within the (3- and y-Proteobacteria. The only taxonomically identified sulfate-reducing bacteria 

having the PAH-degrading phenotype is a ô-Proteobacteria, and clusters closely with all known 

sulfate-reducing monoaromatic-hydrocarbon degrading bacteria (Galushko et al., 1999). Metal-

reducing or methanogenic PAH-degrading bacteria have yet to be identified. 

The intent of this study is to apply coupled molecular microbiological approaches towards the 

investigation of the intrinsic remediation potential of a coal-tar impacted aquifer in northwestern 

Iowa. Previous site-level characterizations of the groundwater contamination, aqueous geochemistry, 

and plume-scale modeling evidence the biodégradation of coal-tar constituents under both aerobic 

and anaerobic (nitrate-reducing, metal-reducing, and sulfate-reducing) conditions. However 

significant spatial heterogeneity in the aqueous geochemistry and hydraulic properties of the aquifer 

have been observed, complicating data interpretation. Coupled with the complex nature of the coal-

tar pollution as well as potential secondary sources of contamination, the specific reduction in U.S. 

EPA regulated "priority" PAH pollutants in-situ remains ambiguous. To confirm the hypothesis that 

priority PAH pollutants are supporting the growth of the indigenous microbial consortia, direct 

evidence of the degradation of PAH compounds is required. If the indigenous microbial consortia 

were growing significantly on PAH compounds, enrichment in phylotypically-relevant bacteria 
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(microbial phylotypes associated with the PAH-degrading phenotype) relative to the nearby 

uncontaminated aquifer microbial community structure would be expected. Coupled with laboratory 

microcosms showing mineralization of specific priority PAH pollutants, this information may provide 

strong direct evidence for intrinsic remediation. 

The objectives of this study are to (1) determine whether the in-situ microbial community 

structure is related to (a) known PAH-degrading microbial phylotypes and (b) reflects the aqueous 

geochemistry observed in groundwater measurements; (2) identify whether the aqueous geochemical 

environments exhibited in-situ are related to the degradation of U.S. EPA priority PAH compounds 

based on laboratory incubations with contaminated site sediments; (3) determine whether the relative 

enrichment of specific microbial phylotypes observed in situ as described in objective 1 correlate to 

the enrichment of specific microbial phylotypes observed in laboratory incubations of objective 2, 

further supporting in-situ microbial growth on priority PAH pollutants; and (4) using contaminated 

site sediments containing coal-tar free product, identify whether the observed enrichment in specific 

microbial phylotype(s) are related to growth on a specific model PAH, phenanthrene. The application 

of these objectives towards the goal of displaying intrinsic remediation potential and implications for 

future investigations of natural attenuation at PAH-contaminated sites are discussed. 

4.3 Cherokee FMGP Study Site 

The subsurface hydrology, contaminant plume extents, and hydrogeochemistry of the former 

manufactured gas plant (FMGP) study site located in Cherokee, Iowa are described in detail in 

Chapter 3. Briefly, coal-tar and BTEX contamination resulting from FMGP operations and possible 

gasoline spillage pervades the aquifer underlying the FMGP site (see Figure 4.1). The shallow semi-

confined aquifer system is comprised of four primary geologic units that underlay a top layer of 

mixed fill including (1) loess, (2) fine-grained silty alluvium, (3) highly transmissive coarse alluvium, 

and (4) glacial till. Because of the thinning of the alluvium layer and the presence of fine-grained 

silty alluvium, there is a region of sharp hydraulic gradient between the site and nearby Little Sioux 

River. The difference in potentiometric surface between the site and river greatly reduces the 

influence of river stage on groundwater elevations in the contaminated region of the aquifer. 

Changes in terminal electron accepting compounds in the contaminated aquifer relative to 

background (uncontaminated) locations along the plume centerline indicate increased microbial 

activity in the contaminated sediments. Background concentrations of dissolved oxygen and nitrate-

N, as high as 6.1 mg/L and 16.5 mg/L, respectively, rapidly deplete within the contaminant source 
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region, over which there is a measured reduction in groundwater oxidation-reduction potential (see 

Chapter 3). Depletion of nitrate is coupled to significant increases in nitrite and dissolved ammonia 

further supporting nitrate reduction. Increased concentrations of ferrous iron and manganese (II) have 

also been observed in the contaminant source region and plume relative to nearby uncontaminated 

groundwater. Groundwater sulfate concentrations generally measure greater than 200mg/L, and may 

support sulfate reduction in the contaminant plume as evidenced by a decrease in sulfate 

concentrations and production of hydrogen sulfide linked to groundwater oxidation-reduction 

potentials of -247 mV or less. Methane was not detected at any location within the aquifer (Black and 

Veatch, 1998). Standard plate counts per mL (±95% confidence interval) on groundwater samples 

from the monitoring wells within the source, plume, and background regions were 2008 ±235 (n-21), 

1905 ±373 (n=23), and 429 ±174 (n=28), respectively, suggesting microbial growth within the source 

region and contaminant plume. 

4.4 Materials and Methods 

4.4.1 Sediment core sampling for intrinsic microbial community structure 

Continuous sediment cores were extracted using Geoprobe direct push technology at eight 

locations corresponding to the background aquifer, source zone, and several locations in the 

contaminant plume exhibiting specific groundwater geochemical environments of interest as shown in 

Figure 4.1. Four-foot sections from the continuous cores were immediately cut in half, and the center 

of the top one inch of sediments from the cut section were discarded. Approximately 5 to 10 grams 

of sediments in the center of the core were removed with a sterile spoon, placed in a 50 mL screw-cap 

sterile tube containing 30 mL 4% paraformaldehyde/phosphate buffered saline (0.13 M NaCl, 7mM 

Na2HP04, and 3mM NaH2P04, pH 7.2), vortexed for 3 minutes, and stored on ice until taken to the 

laboratory (maximum holding time was 2 days). The remaining core sections were capped, sealed 

with electrical tape, and maintained on ice. At the laboratory, the cores were placed in the 

refrigerator at 4°C until further analysis. A total of 15 sediment samples were preserved for microbial 

community structure analysis using fluorescence in-situ hybridization (FISH) from the locations 

indicated in Figure 4.1. 
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4.4.2 Extraction of microorganisms from sediments 

Paraformaldehyde-fixed samples were washed in phosphate buffered saline (PBS, pH 7.2), 

and brought to 20 mL in PBS. Extraction of microorganisms from the preserved sediments was 

performed using a slightly modified method of Unge et al. (1999). Briefly, 0.4 g of acid-washed 

polyvinylpolypirollidone (PVPP) was added to each 50 mL tube containing 20 mL preserved 

sediment-PBS solution and vortexed for 3 minutes. Bulk sediment and bound humic material were 

allowed to settle for 20 minutes and the supernatant was poured into a sterile 50 mL tube. Cells were 

extracted two more times with 10 mL PBS and the supernatants were combined. The pooled 

supernatants were vortexed for one minute and centrifuged at 100 x g for 6 minutes, then poured into 

sterile 50 mL screw-cap tubes and washed in 50% ethanol-PBS, pH 7.2. Sediment-cell slurries were 

stored in 15 mL of the ethanol-PBS solution at -20°C for six months prior to fluorescence in-situ 

hybridization to improve the detection of microbes, particularly of the alpha subdivision of the 

Proteobacteria (Zarda et al., 1997). Preliminary studies showed that recovery of cells from the 

sediments using these methods was effective. More than 80% of Escherichia coli added to sediments 

could be recovered (n=3) based on counts with a probe specific for E. coli. 

4.4.3 Metabolism ofNC-radiolabeled substrates 

The potential for intrinsic biodégradation of PAH compounds was measured in laboratory 

incubations of sediments from cores GPS 22, GPS 23, GPS 25, GPS 26, and GPS 27 (see Figure 4.1). 

Incubations were performed under aerobic and anaerobic (nitrate-amended, iron-amended, and 

sulfate-amended) conditions with 14C-PAH compounds based on associated in-situ groundwater 

geochemistry and historical exposure of the sediments to the PAHs as listed in Table 4.2. Thirty 

grams homogenized sediment (passing a #4 sieve) from individual cores were added to a 100 mL 

amber serum bottle. For aerobic incubations, 30 mL sterile basal salts medium (2 mM KH2PO4, 2 

mM K2HPO4, 9.9 mM NH4C1, 0.5 mM MgCl2-6H20, 0.5 mM CaCl2-2H20, and 0.1 mM FeCl24H20, 

pH 7.1), which was sparged with air for 30 minutes, was added to the serum bottle. A 3 mL culture 

tube containing 2 mL of 2 M sodium hydroxide solution was carefully placed into each serum bottle 

to serve as a l4C02 trap. Bottles were sealed with butyl rubber stoppers. 

Anaerobic incubations were prepared similar to the aerobic assays, except that the nitrate-

amended medium contained 200 mM KNO3 and the sulfate-amended medium contained 200 mM 

Na2S04. Poorly crystalline iron (III) oxide (200 mg) was added to the serum bottles for the iron-

amended assays. All anaerobic media were sparged with helium for 30 minutes prior to use. After 
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sealing with butyl rubber stoppers, the headspace was immediately removed via a needle attached to a 

vacuum line (1 minute at -82 kPa) while agitating mildly to remove entrapped air, and exchanged 

with helium (1 minute at 97 kPa). This process was repeated two more times, resulting in a positive 

pressure helium headspace of 97 kPa. Three hundred seventy five microliters of oxygen-free and 

sterile nitrilotriacetic acid (328 mM) was injected into the ferrogenic assays through the septa to act 

as a chelator of the iron (III) oxide, followed by 375 |iL oxygen-free and sterile 106.6 mM FeCI2 

solution to act as a reductant. Oxygen-free and sterile Na2S-9H20 solution (375 (iL) was injected into 

the sulfidogenic assays through the butyl rubber septa to act as a reductant. Either 321,000 dpm of 

[UL-14C]naphthalene (specific activity, 20 mCi-mmol"1; Sigma, St. Louis, Mo.), 400,000 dpm of [9-

14C]phenanthrene (specific activity, 15_mCi-mmor'; Sigma), 625,000 dpm of [4,5,9,10-14C]pyrene 

(specific activity, 40 mCi-mmol"1; Sigma), or 385,000 dpm of [7-14C]benzo(a)pyrene (specific 

activity, 30 mCi-mmol"1; Sigma) was injected directly into the sediment-slurry through the septa, and 

the bottles carefully swirled by hand. 

The mineralization assays were conducted in triplicate plus one abiotic degradation control. 

Select assays (aerobic: GPS 22, naphthalene and phenanthrene, and GPS 23 phenanthrene; nitrate-

reducing: GPS 22) were re-ran in triplicate to confirm reproducibility. The base medium for the 

abiotic controls was supplemented with 20 g/L sodium azide. All bottles were incubated at 20°C. 

,4C02 evolution in the aerobic bioassays was monitored by exchanging the 2 N NaOH solution via 

syringe through the septa. The NaOH was added to 13 mL of Ultima Gold XR Liquid Scintillation 

Cocktail (Packard Instrument Company, Perkin Elmer, Downers Grove, IL), and the amount of 14C02 

evolved was determined by liquid scintillation counting. Prior to sampling the anaerobic assays, the 

headspace pressure was relieved by penetrating the septa with a needle attached to a 0.5 mm inside 

diameter tube submerged in water at the outlet to prevent air entry. The 2 N NaOH trap solutions 

were exchanged in a manner similar to the aerobic assays, then the remaining headspace of the 

anaerobic assays was purged by vacuum and exchanged with helium 3 times as described above to 

maintain anaerobic conditions. A positive helium pressure was maintained throughout the 

experiments. Headspace air in the aerobic bottles was exchanged following each sampling interval by 

first vacuuming the headspace from the serum bottles (1 minute at -82 kPa), then simultaneously 

vacuuming the headspace from the bottles and allowing atmospheric air to recharge via needles 

pushed through the septa (3 minutes of purge time, 3 minutes equilibration time). 
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4.4.4 Oligonucleotide Probes 

Oligonucleotide probes specific to Archaea, and several members of the Domain Bacteria 

were selected based on their common detection in soils and sediments, relevance to the PAH-

degrading phenotype, and to represent specific functions such as sulfate reduction (see Table 4.3). 

The oligonucleotide probes were synthesized with either Cy 3 (Cy 3; Amersham, Zurich, 

Switzerland), TAM, or FITC reactive dye covalently bound to the 5'-end (Invitrogen Corp., 

Huntsville, AL). The dye-oligonucleotide conjugates (1:1) were lyophilized and stored dry in sterile 

microfuge tubes at -20 °C in the dark. Prior to use, the dry probes were reconstituted in TE buffer ( 10 

mM Tris-HCl, 1 mM EOT A, pH 8.0), covered with aluminum foil, and stored at -20 °C. The 

specificity of the group specific probes within their target group have been reported as 88.3%, 91.8%, 

76.6%, 92.6%, 90.8%, 52.1%, 41.9% (of all Cytophagales), 33.1% (of all Cytophagales), and 82.5% 

for the Domain Archaea (ARCH915), Domain Bacteria (EUB338-I, II, III), a-Proteobacteria 

(ALF968), /3-Proteobacteria (BET42a), y-Proteobacteria (GAM42a), Firmicutes (LGC354a,b,c), 

"Bacteriodes", "Flavobacteria", and "Sphingobacteria" of the Bacteriodetes (CF319a), "Bacteriodes" 

of the Bacteriodetes (BAC303), and Actinobacteria (HGC69a), respectively, given up to 0.4 weighted 

mismatches per probe (Loy et al., 2003). The probe SRB385 is known to not capture all sulfate 

reducing bacteria, but may be sufficient for the purposes of this study (Manz et al., 1998). 

4.4.5 Total cell counts 

DAPI (Sigma, St. Louis, MO) was used to stain cells non-specifically. Total direct DAPI cell 

counts were determined by transferring 0.7 mL of the cell suspension onto 0.8 mL Nycodenz 

(Nycomed) (density = 1.3 g/mL) in sterile 1.5 mL microcentrifuge tubes and centrifuged at 10,000 x 

g for 15 minutes to pellet the remaining sediments. After centrifugation, the top 0.5 mL were 

discarded, and the next 0.5 mL (containing the banded microbial fraction) were transferred to sterile 

1.5 mL microcentrifuge tubes. The microbial fraction was supplemented with 20 (xL of DAPI 

solution (100 ng |xL') and incubated for 7 minutes in the dark. Following incubation, the entire 

solution was transferred to a 15 mL vacuum filtration tower containing a pre-wetted 25 mm diameter 

polycarbonate filter (0.22 jxm pore size) and 5 mL of sterile PBS (pH 7.2). The filter was washed 

three times under vacuum with 3 mL of PBS. The filters were transferred onto slides with Citifluor 

mounting medium (Citifluor, Canterbury, UK), and examined under a Nikon Eclipse 400 microscope 

fitted with a digital imaging system, high pressure mercury lamp, and UV-2E/C filter. The cells were 

counted from duplicate slides at 600x magnification by randomly counting 20 fields on each slide 
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covering an area of 0.0169 mm2 each from a total area of 201 mm2 per filter using Image-Pro Plus 

software (v. 4.5.1, Media Cybernetics, Silver Spring, MD). 

4.4.6 Whole-cell hybridization 

Following total cell counts, whole-cell hybridizations were performed to assess the aquifer 

microbial community structure. Cell-sediment suspension (1 mL) was added to a sterile 1.5 mL 

microfuge tube, and pelleted such that the supernatant could be carefully discarded. The cells-

sediment pellet was resuspended in 300 (xL pre-warmed (46°C) hybridization buffer (0.9 M NaCl, 20 

mM Tris-HCl (pH 7.2), 2.5 mM EDTA, and 0.01% sodium dodecyl sulfate (SDS) in the presence of 

20-35% formamide (ARCH915, BAC303, HGC69a, and SRB385 = 20%; EUB338 (I-III), BET42a, 

and GAM42a = 30%; ALF968, CF319a, LGC354(a,b,c)=35%;NON338=20-35%)). Four ng-^L ' of 

the relevant probe(s) were added to the tubes which were incubated at 46°C for 90 min. Following 

hybridization, cells were pelleted, washed once in pre-warmed (48°C) buffer (20 mM Tris-HCl (pH 

7.2), 2.5 mM EDTA, 0.01% SDS, and either 308, 102, or 80 mM NaCl depending on the formamide 

concentration during hybridization (20%, 30%, or 35%, respectively)) to remove any unbound probe, 

then held in 1 mL wash buffer at 48°C for 10 minutes, after which the cells and sediments were 

pelleted and resuspended in 700 |iL cold (4°C) PBS, pH 7.4. The suspension was loaded onto 800 |xL 

Nycodenz (Nycomed) (density = 1.3 g/mL), centrifuged at 10,000 x g for 15 minutes, and the banded 

bacterial fraction recovered and DAPI-stained as described before. The entire solution was 

transferred to filters and prepared for microscopy as described previously. 

The probe-stained cells were counted relative to DAPI-stained cells under a G-2E/C filter for 

Cy3 and TAM-labeled cells, B-2E/C filter for FITC-labeled cells, and UV-2E/C filter to determine 

the total direct DAPI count. Between 1,000 and 5,400 DAPI-counter-stained cells per probe 

condition were examined and the counts corrected based on non-specific binding of the nonsense 

probe NON338. 

4.4.7 MICRO-FISH 

An aerobic incubation with GPS 22 sediments and [9-14C]phenanthrene was used to identify 

relationships between the microbial community structure and growth on phenanthrene. A 14 mL vial 

containing 2 grams of sediments, 2 mL of air-sparged basal salts medium, and 20 ^Ci (44,400,000 

dpm) [9-14C]phenanthrene (specific activity, 15 mCi-mmol"1; Sigma) was prepared as described above 
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(section 4.4.3). When 14CÛ2 production reached late log phase (26 days), the shell vial containing 

NaOH was removed and 10 mL 4% paraformaldehyde was added to the 14 mL vial. The vial was 

vortexed for three minutes, placed in a 4°C refrigerator for 24 hours, and the microbes extracted from 

the sediments as described above (section 4.4.2). 

One milliliter of the cell-sediment suspension was washed repeatedly in 50% ethanol until 

additional washes resulted in no further removal of 14C, thus minimizing extraneous cell-bound [9-

14C]phenanthrene that could potentially interfere with the autoradiographic response. Based on liquid 

scintillation counting of the wash solution, three washes with 50% ethanol were required. The 

washed cells-sediment pellet was resuspended in 700 ^L PBS, pH 7.4, loaded onto 800 |iL Nycodenz 

(Nycomed) (density = 1.3 g/mL) in a 1.5 mL sterile microfuge tube, centrifuged at 10,000 x g for 15 

minutes, and the banded bacterial fraction recovered as before. The banded bacterial fraction was 

transferred to a 15 mL vacuum filtration tower containing a pre-wetted 25 mm diameter 

polycarbonate filter (0.22 |im pore size) and 5 mL PBS (pH 7.4). The filter was washed three times 

under vacuum with 3 mL each of PBS, transferred cell-side down onto a 22 mm square cover glass 

(No. 2) treated with a 2% solution of 3-aminopropyltriethoxysilane (Sigma, St. Louis, MO), clamped 

between two glass slides using binder clips, and placed in a 42°C oven for 1 hour, after which the 

filter was peeled away leaving the cells adhered to the cover glass. The cells were dehydrated using 

50%, 80%, and 96% ethanol, respectively, three minutes each, and the cover glasses placed cell-side 

up on microscope slides. The cells were then treated with 30 jxL of hybridization buffer (as described 

above) containing 4 ng-|xL ' of the relevant probe(s) and 4 ng-gL"1 DAPI, covered with a Hybri-Slip 

(Sigma, St. Louis, MO), placed into 50 mL plastic tubes (humidity chambers) and hybridized at 46°C 

for 90 minutes. Following hybridization, the cover glasses were washed for 15 minutes at 48°C in the 

appropriate wash buffer (described above) then carefully dried under a stream of filtered air. 

Microautoradiography was performed in the dark using a method similar to Cottrell and 

Kirchman (2000). Cover glasses were dipped in molten (43°C) Kodak NBT-2 autoradiographic 

emulsion diluted 2 parts emulsion and 1 part de ionized water. After incubation at 4°C for 10 days, 

the slides were warmed to room temperature and the emulsion developed using Kodak Dektol 

developer, a deionized water stop bath, and Kodak fixer, as per manufacturer's instructions. The 

cover glasses were air dried, mounted on clean glass slides using Citifluor AF1 mounting medium 

(Citifluor Ltd., Canterbury, UK), and examined under a Nikon Eclipse 400 microscope using a G-

2E/C filter for Cy3 and TAM-labeled cells, B-2E/C filter for FITC-labeled cells, and UV-2E/C filter 

to determine the total direct DAPI count. Silver grain formation corresponding to hybridized cells 
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was determined by switching between fluorescence and bright-field modes. Digital imaging analysis 

was performed using Image-Pro Plus (v. 4.5.1, Media Cybernetics, Inc., Silver Spring, MD). 

4.5 Results 

4.5.1 Total DAPI-direct counted microbes in aquifer sediments 

Table 4.4 shows the total direct DAPI counts with depth at eight sampling locations 

corresponding to background sediments (GPS21), the coal-tar source region (GPS22), and several 

locations in the contaminant plume (GPS23-GPS28). Total microbial populations varied between 1.5 

±1.1 x 104 cells g sediment"1 in the background region to 1450 ±90 x 104 cells g sediment"1 in the 

region of the free-phase coal-tar source material, and in general decreased along the plume centerline 

moving out of the coal-tar source region (see Figure 4.1). At GPS26, which is located within a region 

of possible secondary source contamination, the DAPI-stained cell count per gram sediments 

increased again, presumably in response to increased hydrocarbon mass. At GPS28, located 

approximately at the plume boundary, the DAPI-stained cell count increased to levels near that of the 

source region. The reason for increased cell counts at this location remains unclear. 

Microbial counts with depth were generally similar, except at GPS22 and GPS26. The 

difference in microbial numbers at these locations may be related to differences in sediments PAH 

concentrations and toxicity effects. Sediments at 5.5 m and 7.9 m, with 710-2010 mg/kg and 1890-

6100 mg/kg PAH (as the sum of the 16 U.S. EPA priority PAH pollutants), respectively, had an order 

of magnitude lower DAPI count than at 6.7 m, where the PAH concentration was 250-305 mg/kg. 

4.5.2 Microbial community structure of aquifer sediments 

Presented in Table 4.4 are the percent of each probe-detected group of microbes relative to 

total DAPI counts and the 95% confidence interval based on counts of repetitive microscopic fields. 

Larger confidence bands about the mean probe-detected counts were observed where probe counts 

were low. Since a minimum of 1028 DAPI-counterstained cells were counted for each probe, a 

minimum detection limit of 0.1% of the total DAPI count was set. The loss of cells during the 

hybridization procedure relative to the DAPI-staining procedure presented above was generally less 

than 10%. 

Neglecting the results for GPS24 (3.7 m bgs), the sum of FISH-stained Bacteria and Archaea 

resulted in the detection of between 38.2 - 74.9% of the DAPI-stained cells in the sediment samples. 
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This range agreed favorably to previously reported values for soils and sediments (Llobert-Brossa et 

al., 1998, Zarda et al., 1997). A similar percentage of DAPI-stained cells identified by FISH in the 

background sediments as compared to hydrocarbon contaminated sediments was observed, suggesting 

that the probe set used was fairly robust in describing the microbial community within this 

contaminated aquifer (see GPS 21, Table 4.4). For GPS24 (3.7 m bgs), only 17% of the DAPI-

stained cells were detected with these probes. It is unclear as to why these cells did not hybridize 

well, but it may be related to specific factors in sample collection and/or preservation and storage of 

this particular sediment sample. The lack of a probe for Prokaryotes in this study almost certainly 

contributed to the difference between total DAPI-stained organisms and the sum of FISH-detected 

cells. 

The spatial heterogeneity observed in the in situ microbial community structure reflected well 

the aqueous geochemistry and supported enrichment of known PAH-degrading phylotypes. 

Actinobacteria (high DNA G+C content gram positive bacteria) and y-Proteobacteria dominated the 

microbial community structure within the contaminated aquifer underlying the Cherokee FMGP site 

(Figure 4.2 and Table 4.4). These bacteria comprised a more significant portion of the microbial 

community in sediments associated with aerobic regions of the aquifer (GPS 21, GPS 22, and GPS 

23) as compared to more anaerobic sediments (GPS 25, GPS 26, and GPS 27). 

There was significant enrichment of p-Proteobacteria (BET42a) (nearly 29% of all detected 

bacteria and 18% of the DAPI-stained cells) in sediments of the coal-tar source region (sediment core 

GPS 22, 6.7 m bgs) which were associated with aerobic and nitrate reducing aqueous geochemistry. 

The lowest acetone extractable sum of U.S EPA priority PAH pollutants of sediment core GPS 22 are 

at 6.7 m bgs (as described above). This suggests that these organisms lack special phenotypic 

characteristics that allow them to grow in more toxic environments located a few meters directly 

above and below the depth they were detected at. /3-Proteobacteria were insignificant at all other 

locations throughout the site. 

a-Proteobacteria (ALF968) were also relatively enriched in the coal-tar source region, but 

only in the highly contaminated sediments associated with the pooled source material of core GPS22 

at 7.9 m bgs (6.6% of the EUB338 probe-conferred bacteria). a-Proteobacteria were also detected in 

the highly anaerobic sediment core GPS27 near the secondary source region (6.7% of the EUB338 

probe-stained bacteria). CF319a-hybridized cells were in general were more enriched in deeper 

rather than shallow sediment samples. These cells comprised nearly 17% of the DAPI-stained cells in 

GPS28. 
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The probe SRB385 targets sulfate-reducing bacteria, predominately of the ô-Proteobacteria. 

SRB385 is also complimentary to several members of the Actinobacteria within the 

Streptosporangium, Thermomonospora, Frankia, and Blastococcus genera (Cole et al., 2003), but is 

not complimentary to bacteria of any known genera within the Actinobacteria associated with PAH 

degradation. Although potential for duplication between SRB385 and HGC69a exists, positive 

hybridizations for SRB385 did not correspond to the positive detection with HGC69a in the Cherokee 

FMGP site sediments. The probe SRB385 primarily hybridized to organisms in sediment core 

GPS26 (18-24% of EUB-detected bacteria), and especially in GPS27 sediments, where nearly 99% of 

the bacteria but only 37% of DAPI-stained cells were detected with the SRB385 probe. As can be 

seen in Figure 4.2, sediment core GPS 26 is associated with sulfide concentrations as high as 1.9 

mg-L'1 indicative of sulfate-reducing microbial activity. GPS 27 sediments are associated with the 

most anaerobic groundwater exhibited in situ, with measured values of the oxidation-reduction 

potential of -247 mV and hydrogen sulfide concentrations of greater than 2.4 mg-L"1. Bacteriodes and 

Firmicutes (LGC354a,b,c) remained fairly insignificant across all sampling locations. 

4.5.3 Respiration of 14C PAH compounds in aquifer-derived sediments 

Laboratory-scale incubations with site sediments under relevant redox conditions show 

potential for microbial degradation of select PAH pollutants. Figure 4.3 shows the 14C02 evolution 

from aerobic incubation studies with contaminated site sediments from cores GPS 22, GPS 23, GPS 

25, GPS 26, and GPS 27. Based on historical exposure of the sediments to PAH pollution (see Table 

4.1), incubations with benzo(a) pyrene were only conducted in sediments from the coal-tar source 

region (GPS 22). Incubations with pyrene were performed in sediment cores GPS 22 and GPS 23, 

whereas incubations with phenanthrene were performed in all cores except GPS 27, located near the 

potential secondary contamination source. 

Aerobic naphthalene mineralization was similar in all sediments with no observable lag (<12 

hours) and respiration of approximately 50 to 60% of the added [UL-l4C]naphthalene within 23 days 

of incubation (Figure 4.3). Mineralization of [9-14C]phenanthrene was not as extensive, and 

depended on exposure history. In the highly contaminated source sediments of GPS 22, a 3 day lag 

phase was followed by conversion of 28.8 ± 1.1% of the added 14C to 14C02. In the less contaminated 

sediments of cores GPS 23 and GPS 25, a lag in phenanthrene mineralization was not observed, and 

14C02 production reached 34.4 ± 5.2% and 41.7 ± 4.6%, respectively within 23 days. In sediments 

from GPS 26, where phenanthrene exposure history was minimal, there was a 6 day lag phase and 
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relatively slow mineralization of [9-14C]phenanthrene reaching only 18.4 ± 5.8% in 23 days. 

Benzo(a)pyrene mineralized to a small extent (0.63 ± 0.57%, 23 days) under aerobic conditions after 

a lag phase of approximately 15 days in sediments from GPS 22. Pyrene mineralization was not 

observed in the sediments of GPS 22 or GPS 23. The lack of 14C02 production in aerobic incubations 

with [4,5,9,10-14C]pyrene does not preclude metabolite formation by the microbial community 

(Kazunga and Aitken, 2000). Non-mineral metabolites were not monitored for the purposes of this 

study. 14C02 evolution was not observed in control incubations. 

In sediments from GPS 22, where the in situ groundwater geochemistry reflects active 

nitrate-reduction as evidenced by decreasing nitrate and increasing nitrite concentrations (see Figure 

4.2), naphthalene mineralization in nitrate-amended incubations was observed with no apparent lag 

(Figure 4.4). Phenanthrene mineralization in nitrate-amended incubations with these sediments, 

however, was negligible. In nitrate-amended incubations with sediments from GPS 23, where the in-

situ nitrate concentrations are less than 1 mg-L"1 and nitrite concentrations were decreasing relative to 

nearby upgradient groundwater concentrations, both naphthalene and phenanthrene mineralization 

were less that 0.1%. Repeating the nitrate-amended incubations for naphthalene in GPS 22 sediments 

yielded the same mineralization potential (data plotted in Figure 4.4(a)). Serial transfers to fresh 

nitrate-amended, anaerobic incubations without sediments yielded 0.81 ± 0.06% mineralization in 14 

days (data not shown in Figure 4.4). 

Anaerobic iron-amended incubations with site sediments from GPS 23, where elevated 

dissolved iron concentrations were found, did not display 14C02 production with either naphthalene or 

phenanthrene (Figure 4.4(c)). However, in sediments from GPS 25, where the aqueous geochemistry 

was not indicative of microbially-mediated ferrogenic reactions, both naphthalene and phenanthrene 

were mineralized (2.24 ± 0.32% and 2.05 ± 0.41%, respectively at 22 days). It is not clear why the 

aqueous geochemical measurements did not reflect the potential for degradation under iron-reducing 

conditions. However, the GPS 25 sediment core contained significant precipitated iron evidenced by 

the red color of the aquifer sands, which could be a potential iron(III) source. Red coloration of the 

aquifer sediments was not observed in any other direct-push core. 

Figure 4.4(e) shows the potential for naphthalene mineralization under sulfate-reducing 

conditions in the sediments from GPS 27. Naphthalene mineralization proceeded with no apparent 

lag (<12 hours) and reached 1.50 ± 0.07% of the added [UL-14C]naphthalene within 23 days 

incubation. 
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4.5.4 Microbial community structure of GPS 22 and GPS 23 sediments following aerobic 

incubation 

Table 4.5 shows the in situ microbial community structure of the aquifer sediments GPS 22 

(5.5 m bgs, 6.7 m bgs, and 7.9 m bgs) and GPS 23 (3.7 m bgs and 6.1 m bgs) as compared to the 

community structure of the homogenized core sediments following aerobic incubation. There was 

approximately an order of magnitude microbial growth in the GPS 23 sediments during the 

incubation relative to the in-situ population based on DAPI-staining. However, the percent of DAPI-

stained organisms identified by FISH did not change significantly (59% - 64%). In contrast, total 

DAPI-stained counts in GPS 22 sediments approximately doubled and increased in probe-detected 

cells from 44 - 63% in situ to 84% following incubation. The enrichment of the presumed PAH-

degrading phylotypes j3- and y-Proteobacteria in aerobic incubations with site sediments suggest that 

these organisms may be active in the uptake of PAH compounds in situ. The dominance of 

Actinobacteria in situ was not reflected in the microbial community structure of site sediments 

following aerobic incubations. 

Growth of all bacteria except for the Bacteriodes and Prevotella genera, Actinobacteria, and 

S-Proteobacteria was observed in the GPS 23 sediment incubations. Fifty percent of the probe-

detected bacteria were y-Proteobacteria, which compared to 22% - 44% observed in situ. f3-

Proteobacteria and Bacteriodetes (hybridizing to the CF319a probe) were enriched in the bioassay 

relative to the in-situ structure as well. The enrichment of /3-Proteobacteria was particularly 

significant (0.17% to 1.63% in-situ, as compared to 8.1% in the aerobic bioassay). Similarly, the 

Firmicutes increased from 0.3% or less in-situ to 6.8% in the aerobic incubations. a-Proteobacteria 

remained at the same level relative to total bacteria, but grew in population by almost two orders of 

magnitude. In contrast, the Actinobacteria, which were a significant component of the in-situ 

microbial community structure remained stagnant in population per gram sediment, but became much 

less significant in the final community structure. Bacteriodes and Prevotella (hybridizing to the 

BAC303 probe), â-Proteobacteria, and Archaea were insignificant in the microbial community 

following aerobic incubation. 

Incubations with GPS 22 sediments, resulted in significant enrichment of /3-Proteobacteria, 

which dominated the final microbial community structure (56% of all bacteria). y-Proteobacteria, 

which comprised between 9.7 and 36% of the in situ community structure, remained stationary in 

population per gram sediment and percent of the final community structure (10%). Similar to the 

incubations with GPS 23 sediments, Actinobacteria, which dominated the in situ microbial 
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community, declined sharply in representation following aerobic incubations. However, Firmicutes 

and Bacteriodetes did not enrich in the GPS 22 incubations, even though both were more strongly 

represented in the in situ microbial community of GPS 22 than GPS 23. a-Proteobacteria, which 

were significant in the highly contaminated sediments at 7.9 m bgs, were not detected following 

aerobic incubation. Similarly, S-Proteobacteria and Bacteriodes / Prevotella (BAC303), which were 

detected in the in-situ microbial community were not detected following incubation. 

4.5.5 MICRO-FISH 

Microautoradiography resulted in autoradiograms in which silver grain formation coincided 

well with the spatial location of cells detected by whole cell hybridizations as shown in their 

respective fluorescence images (see Figures 4.5-4.8). The strong association of fluorescently labeled 

cells and silver grain formation allowed for counts of PAH-degrading cells. 

Table 4.5 shows cells active in phenanthrene uptake following incubation with [9-

14C]phenanthrene in the highly contaminated sediments from GPS 22. From Table 4.5, it can be seen 

that 40% of all DAPI-stained organisms and 27% of all EUB-stained bacteria were active in the 

uptake of phenanthrene (see Figure 4.5). 82% of bacteria active in phenanthrene uptake were 

identified as y3-Proteobacteria, which coincided with their enrichment following aerobic incubation 

as compared to the in situ microbial community structure. 40% of all detected /3-Proteobacteria were 

active in growth on phenanthrene. 26% of the probe-detected y-Proteobacteria, which did not 

increase in aerobic incubations relative to the in situ microbial community structure, also grew on 

phenanthrene, comprising 9.8% of all detected active bacteria. The Actinobacteria were shown to be 

active in the uptake of phenanthrene, but to a lesser extent than the Proteobacteria. 2.0% of all probe-

detected active bacteria were Actinobacteria. Although Firmicutes and Bacteriodetes were detected 

following aerobic incubations, no silver grain formation was observed to coincide with these probe-

detected cells (see Figure 4.8). 44% of active DAPI-stained organisms were not detected with the 

probes EUB33 8(1,11,111) or ARCH915. However, only 5.6% of the phenanthrene-degrading bacteria 

were not identified by the probe set used in this study. These results suggest that the probes used in 

this study were robust in describing aerobic PAH degrading bacterial phylotypes. 
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4.6 Discussion 

4.6.1 Support for intrinsic remediation of PAH compounds 

From the results presented above, there is strong evidence for intrinsic remediation of PAH 

compounds under aerobic conditions in the coal-tar impacted aquifer underlying the Cherokee FMGP 

site. Mineralization of naphthalene and phenanthrene, and to a lesser extent benzo(a)pyrene, in 

aerobic incubations with site sediments of cores GPS 22, GPS 23, GPS 25, and GPS 26 was observed. 

Whole cell hybridizations indicated growth of Actinobacteria, /3-Proteobacteria, y-Proteobacteria, 

and Bacteriodetes within the contaminant source region and plume, increasing between two to three 

orders of magnitude as compared to uncontaminated aquifer sediments. The microbial community 

structure of GPS 22 and GPS 23 sediments following aerobic incubation indicated that /3- and y-

Proteobacteria were active in PAH degradation. Microautoradiography confirmed these results and 

indicated that Actinobacteria were also active in the uptake of [9-14C]phenanthrene under aerobic 

conditions, even though their population declined in aerobic incubations. Concentrations of 0.5 - 2 

mg-L*1 dissolved oxygen down-gradient from the source region in the contaminated aquifer may 

support extensive aerobic oxidation of PAH pollutants in situ. 

Anaerobic incubations with site sediments showed naphthalene mineralization under nitrate-

reducing conditions, which corresponded to in situ aqueous geochemical measurements showing 

consumption of approximately 16 mg-L"1 nitrate and production of nitrite within the coal-tar source 

region. The increased population of /3-Proteobacteria within the intrinsic microbial community 

structure in these sediments further supports the potential for intrinsic naphthalene mineralization 

under nitrate-reducing conditions (see Table 4.1). Similarly, naphthalene mineralization under 

sulfate-reducing conditions was associated with sediments of core GPS 27, from which groundwater 

geochemistry displayed decreasing sulfate concentrations, elevated sulfide concentrations, and an 

oxidation-reduction potential of -247 mV. This was supported in the in situ microbial community 

structure, which was dominated by sulfate-reducing bacteria. 

Evidence of naphthalene and phenanthrene mineralization under iron-reducing conditions in 

laboratory-scale incubations with core GPS 25 sediments did not agree with in situ measurements of 

ferrous iron. Further, the intrinsic microbial community structure was not clearly identified in this 

core using the probe set chosen for this study. This lack of detection with whole-cell hybridizations 

may be related to the presence of iron-reducing bacteria. One common metal-reducing bacterium that 

may use monoaromatic compounds as a growth substrate, Geobacter metallireducens, does not 

hybridize to the probe set used in this study (Cole et al., 2003). Metal-reduction has been linked to 
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several species of bacteria across different phytogenies, and may also explain the ambiguity in the 

results. At present, no oligonucleotide probes have been proposed that target only metal-reducing 

bacteria. The development of molecular probes that better identify metal-reducing bacteria would be 

helpful for these types of investigations of intrinsic bioremediation potential under specific redox 

conditions. 

4.6.2 Implications for future investigations of natural attenuation of PAH compounds 

This study provides direct evidence of the ability of the intrinsic microbial community to 

degrade specific PAH pollutants. Extensive spatial heterogeneity in the potential for select PAH 

pollutants to undergo aerobic and anaerobic mineralization was observed. For example, aerobic 

phenanthrene mineralization in laboratory-scale incubations varied in lag phase, rate, and extent 

depending on the source sediments and contaminant exposure history. However, this spatial 

heterogeneity was not observed in naphthalene mineralization. Furthermore, in-situ groundwater 

measurements of the coupled redox species nitrate/nitrite and sulfate/sulfide reflected the potential for 

anaerobic biodégradation of naphthalene, but not phenanthrene, in site sediments. Finally, as 

previously noted by Rolling et al. (2001), groundwater measurements of ferrous iron and Mn(II) 

which are susceptible to precipitation-dissolution reactions and lack measurable redox couples do not 

provide reliable indication of active biological reactions. This was evidenced in the iron-reducing 

incubations with GPS 23 and GPS 25 sediments (see Figure 4.4). Therefore, it is especially important 

to validate the relevance of observed redox processes in the field with direct measures of specific 

PAH pollutant degradation such as laboratory-scale incubations with site sediments. Without direct 

measures of intrinsic degradation potential of specific PAH pollutants, errors in estimating natural 

attenuation rates based on site-level measurement of terminal electron acceptor consumption using 

mass balance modeling approaches such as instantaneous reaction could yield erroneous results. 

Further complicating mass balance approaches, PAH-degrading organisms may grow on 

many different carbon sources, with PAHs contributing only a fraction of the assimilated carbon. In 

this study, microautoradiography showed that only 18, 26, and 40% of the bacteria within the 

Actinobacteria, y-Proteobacteria, and y6-Proteobacteria, respectively, grew in part on [9-

14C]phenanthrene. The growth of microorganisms not metabolizing the phenanthrene was at the 

expense of other (unidentified) carbon sources within the coal-tar contaminated sediments. This 

implies that these organisms also derived energy from compounds other than phenanthrene, thus 

resulting in some net depletion of dissolved oxygen not attributable to phenanthrene degradation. 
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This should be taken into account where mass-balance or instantaneous-reaction modeling approaches 

are used to estimate PAH mass destroyed and/or the time to achieve remediation goals. Appropriate 

tertiary lines of evidence capable of indicating uptake of PAH pollutants under specific redox 

conditions may be required to validate assumptions of terminal electron acceptor partitioning 

associated with degradation of PAH pollutants made in mass-balance or instantaneous-reaction 

modeling approaches. 

Although direct evidence such as laboratory-scale incubations with site sediments and 

molecular microbiological data can support natural attenuation as a remedial mechanism at PAH 

contaminated sites, care must be taken in data analysis and interpretation. Changes in the in situ 

microbial community structures due to laboratory incubations may lead to misinterpretation and 

erroneous conclusions regarding the activity of specific organisms on PAH compounds. Although the 

Actinobacteria dominated the in-situ microbial community structure, their populations declined in 

aerobic incubations with site sediments, implying that these organisms were not involved in intrinsic 

degradation of the coal-tar constituents. However, Actinobacteria are known to be relatively slow-

growing organisms that are fairly resistant to environmental stress (Bastiens et al., 2000). This may 

explain the enrichment of these organisms in-situ where environmental stress may be high, and 

decline relative to more opportunistic organisms such as the y9- and y-Proteobacteria in the aerobic 

incubations, where environmental stress is low. Considering these differences, the intrinsic microbial 

community structure would indicate that Actinobacteria are important in the degradation of coal-tar 

constituents, whereas bioassays would indicate the opposite. Based on microautoradiography, /3-

Proteobacteria, y-Proteobacteria, and Actinobacteria were all active in growth on phenanthrene. 

Finally, enrichment of specific bacterial phylotypes as part of the microbial community 

structure in situ, in laboratory-scale assays, or a combination of both may not necessarily indicate 

growth on specific contaminants of complex sources such as coal-tars. In this study, the growth of 

Bacteriodetes (hybridizing to the CF319a probe) in the aerobic bioassays as well as their presence as 

a part of the site microbial community structure as shown in Figure 4.3 indicated these bacteria may 

be important to the degradation of coal-tar constituents in these sediments. However, 

microautoradiography showed that Bacteriodetes were not involved in the uptake of phenanthrene in 

these aquifer sediments. Caution should be exercised when using enriched or altered 16S rRNA-

based community profiles to infer specific microbial functions. 
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Table 4.1 Phylotypic relatedness of bacteria associated with PAH mineralization as reported in literature. 

Phylum/Class Genus/Species Geographical source Reference(s) 

Aerobic 
a-Proteobacteria Sphingomonas 

fl-Proteobacteria 

f-Proteobacteria 

A ctinobacteria 

Firmicutes 

Bacteriodetes 

Alcaligenes: Burkholderia; 
Bordetella; Acidovorax; Variovorax; 
Pseudomonas sp. V-07-10; 
Comamonas; Copiotrophic 
ultramicrobacteria 

Cycloclasticus; Pseudomonas; 
Moraxella; Marinobacter; Vibrio; 
Halomonas; Pseudoalteromonas; 
Marinomonas; Acinetobacter; 
Stenotrophomonas 

Mycobacterium; Rhodococcus; 
Arthrobacter; Streptomyces; 
Nocardiodes; Gordonia; Nocardia; 
Terrabacter; Tsukamurella 

Bacillus cereus P21; Paenibacillus 

Flavobacterium 

New Jersey; Texas; Illinois; 
Germany; Florida; Boston 
Harbor; Sweden; France; South 
Carolina 

Boston Harbor; New Zealand; 
Canada; Sweden; Norway; New 
York; New Jersey; France; 
Florida; Japan 

Puget Sound; Gulf of Mexico; 
Boston Harbor; Canada; Sweden; 
New York; Florida; Germany; 
New Jersey; France; Japan 

Boston Harbor; Texas; Germany; 
Japan; Spain; New Jersey 

New Jersey; Delaware 

Boston Harbor 

Bogan et al., 2001 ; Frederickson et al., 1995; Wang et al., 1996; 
Kazunga et al., 2001; Bastiens et al., 1998; Daane et al., 2001 

Eriksson et al., 2003; Laurie and Lloyd-Jones, 1999; Johnsen et al, 
2002; Berardesco et al., 1998; Padmanabhan et al., 2003; Mueller 
et al, 1997; Bogan et al., 2001; Daane et al., 2001; Goyal and 
Zylstra, 1996 

Geiselbrecht et al., 1996; Geiselbrecht et al., 1998; Daane et al, 
2001; Kasai et al., 2002; Boonchan et al., 1998; Bogan et al., 
2001; Mueller et al, 1997; Padmanabhan et al., 2003; Eriksson et 
al., 2003; Berardesco et al., 1998; Gauthier et al., 1992; Melcher et 
al., 2002; Tagger et al., 1990 

Kastner et al., 1994; Grosser et al., 1991; Wang et al., 1995; Uz et 
al., 1998; Daane et al., 2001; Trenz et al., 1994; Sutherland et al., 
1990; Saito et al., 2000; Johnsen et al, 2002; Berardesco et al., 
1998; Kleespies et al., 1996; Heitkamp and Cemiglia, 1988; Vila 
et al., 2001 

Kazunga et al., 2001; Daane et al., 2001 

Berardesco et al., 1998; Shiaris and Clooney, 1983 

Nitrate-Reducing 
p-Proteobacteria 

y-Proteobacteria 

Variovorax; Bordetella; Alcaligenes 

Pseudomonas; Vibrio 

Canada 

Canada; Puget Sound 

Eriksson et al., 2003 

Rockne et al., 2000; Eriksson et al., 2003 

Sulfate-Reducing 
S-Proteobacteria Delta Proteobacterium NaphS2 San Diego Bay Hayes and Lovley, 2002; Galushko et al., 1999 
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Table 4.2 Historical aromatic hydrocarbon exposure of Cherokee FMGP aquifer sediments used in bioassays. 

Pollutant Pure Aqueous Measured groundwater pollutant concentrations 
Solubility mean (±standard deviation) 

GPS 22a GPS23 GPS 25 GPS 26 GPS 27 

Monoaromatics 
Benzene 1780000 80 (±40) 750 (±610) 530 (±400) 270 (±440) 92 (±22) 
Ethylbenzene 152000 540 (±450) 770 (±280) 300 (±460) 65 (±92) 33 (±15) 
Toluene 515000 200 (±150) 200 (±120) 33 (±40) 1.1 (±2.2) 0.9 (±0.8) 
Xylenes 198000 550 (±360) 720 (±260) 270 (±260) 34 (±42) 29 (±24) 

2-Ring PAH 
Naphthalene 31700 6880 (±11960) 3990 (±2770) 1380 (±2120) 9.8 (±21) 1.6 (±0.6) 
1-Methylnaphthalene 28500 2000 (±3550) 470 (±100) 300 (±180) 17 (±32) 1.1 (±1.2) 
2-Methylnaphthalene 25400 2520 (±5360) 210 (±220) 13 (±17) ND ND 

3-Ring PAH 
Acenaphthene 3420 330 (±660) 62 (±26) 45 (±20) 7.3 (±12) ND 
Acenaphthylene 3930 1420 (±2470) 330 (±56) 200 (±120) 12 (±20) 0.3 (±0.5) 
Fluorene 1690 1450 (±3050) 98 (±36) 22 (±21) ND 0.1 (±02) 
Phenanthrene 1000 2010 (±4330) 79 (±49) 44 (±20) 0.6 (±1.4) ND 
Anthracene 45 540 (±1170) 16 (±15) 4.2 (±4.0) ND ND 

4-Ring PAH 
Fluoranthene 206 780 (±1740) 8.8 (±12) 0.5 (±1.0) ND ND 
Pyrene 130 1110 (±2490) 2.8 (±4.8) 0.4 (±0.9) ND ND 
Benzo[a]anthracene 5.7 290 (±640) 4.4 (±7.5) ND ND ND 
Chrysene 1.8 250 (±550) 2.3 (±3.8) ND ND ND 

5-Ring PAH 
Benzo[b]fluoranthene 14 98 (±220) 0.6 (±1.1) ND ND ND 
Benzo[k]fluoranthene 4.3 80 (±180) ND ND ND ND 
Benzoja] pyrene 3.8 270 (±600) 0.5 (±0.9) ND ND ND 
Dibenz|a,h]anthracene 0.50 22 (±49) ND ND ND ND 

6-Ring PAH 
Benzo [g,h,i] perylene 0.26 180 (±400) 2.2 (±3.8) ND ND ND 
Indeno|l,23-c,d]pyrene 0.53 120 (±260) 1.4 (±2.5) ND ND ND 

a. = Free product observed in sediment core 
ND = Not detected above 1 |ig/L (BTEX) or 0.1 pg/L (PAH) 
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Table 4.3 Target organisms and oligonucleotide probes used in this study. 

Target Organisms 
Specificity 

Probe Name Target Target Site " Oligonucleotide Sequence 
(5'-3') 

Fluor b Ref. 

Domain Archaea ARCH915 16S rRNA 915-934 GTG-CTC-CCC-CGC-CAA-TTC-CT FITC c 

Domain Bacteria EUB338 
EUB338-II 
EUB338-III 

16S rRNA 
16S rRNA 
16S rRNA 

338-355 
338-355 
338-355 

GCT-GCC-TCC-CGT-AGG-AGT 
GCA-GCC-ACC-CGT-AGG-TGT 
GCT-GCC-ACC-CGT-AGG-TGT 

Cy3, FITC 
Cy3, FITC 
Cy3, FITC 

d 
e 
e 

Proteobacteria 
a-Proteobacteria 
^-Proteobacteria 
y-Proteobacteria 

ALF968 

BET42a 

GAM42a 

16S rRNA 

23S rRNA 

23S rRNA 

968-986 

1027-1043 

1027-1043 

GGT-AAG-GTT-CTG-CGC-GTT 

GCC-TTC-CCA-CTT-CGT-TT 

GCC-TTC-CCA-CAT-GCT-TT 

FITC 

FITC 

CY3 

f 

g 

g 

Sulfate Reducing Bacteria 
Some sulfate-reducing bacteria of the S-
Proteobacteria, other 5-Proteobacteria 
and several gram positive bacteria 

SRB385 16S rRNA 385-402 CGG-CGT-CGC-TGC-GTC-AGG FAM d 

Gram Positive Bacteria 
Actinobacteria 
Gram Positive Bacteria with 
High DNA G+C Content 

HGC69a 23S rRNA 1901-1918 TAT-AGT-TAC-CAC-CGC-CGT Cy3 h 

Firmicutes 
Gram Positive Bacteria with 
Low DNA G+C Content 

LGC354a 
LGC354b 
LGC354c 

16S rRNA 
16S rRNA 
16S rRNA 

354-371 
354-371 
354-371 

T GG-AAG-ATT-CCC-TAC-T GC 
CGG-AAG-ATT-CCC-TAC-TGC 
CCG-AAG-ATT-CCC-TAC-TGC 

FITC 
FITC 
FITC i 

Bacteriodetes 
Bacteriodetes 
Bacteriodes and Prevotella genera 

CF319a 
BAC303 

16S rRNA 
16S rRNA 

319-336 
303-319 

TGG-TCC-GTG-TCT-CAG-TAC 
CCA-ATG-TGG-GGG-ACC-TT 

Cy3 
FITC 

j 
j 

Nonsense control probe NONEUB 16S rRNA 338-355 CGA-CGG-AGG-GCA-TCC-TCA FITC k 

a. 16S or 23 S rRNA position according to Escherichia coli numbering, b. Fluor = fluorochrome. Fluorescent markers were linked to the 5' 
end., c. Stahl and Amann, 1991, d. Amann et al., 1990, e. Daims et al., 1999, f. Neef, 1997, g. Manz et al., 1992, h. Roller et al., 1994, i. Meier 
et al., 1999, j. Manz et al., 1996, k. Wallner et al., 1993 
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Table 4.4 Microbial community structure of the Cherokee FMGP site sediments. 

Core Sample 

Depth 
(m) 

II
I! 

Bacteria b' Archaea Proteobacteria Gram Positives CFB Cluster Core Sample 

Depth 
(m) 

II
I! 

Bacteria b' Archaea 
a fi Y S 

(SRB385) 
High 
DNA 
G+C 
content 

Low 
DNA 
G+C 
content 

Bacteriodetes Bacteriodes 
and 
Prevotella 
genera 

GPS 21 6.1 1.5 ± 1.1 64.0 0.2 - c - 0.6 15.4 - 20.2 0.2 1.8 0.2 
13.6 0.4 0.6 7.2 5.3 0.0 0.4 0.0 

7.3 5.6 ± 6.5 57.1 0.3 - 1.0 18.0 1.8 22.2 0.5 5.4 0.3 
7.9 0.4 0.7 4.8 1.0 5.0 0.3 1.2 0.3 

GPS 22 5.5 347 ±25 57.8 - 0.1 4.5 5.6 0.6 36.0 0.4 1.7 0.5 
8.2 0.2 0.6 1.9 1.3 3.5 0.6 0.7 0.5 

6.7 1450 ±90 62.9 - 0.1 18.0 12.5 0.1 24.9 0.2 7.2 0.6 
3.7 0.2 4.7 4.8 0.1 5.0 0.3 1.7 0.2 

7.9 439 ± 58 44.4 5.3 2.9 0.7 15.9 - 29.2 0.1 7.2 -

7.5 2.3 1.1 0.2 6.6 6.2 0.3 1.3 
GPS 23 3.7 139 ± 14 59.4 - 0.2 1.0 12.9 - 21.7 - 3.3 -

5.6 0.4 1.1 4.3 3.5 1.1 
6.1 653 ± 36 64.3 - - 0.1 28.3 - 33.1 0.2 2.4 0.4 

6.4 0.2 7.4 5.3 0.4 1.1 0.4 
GPS 24 3.7 120 ±23  16.0 1.0 0.8 - - 7.1 0.4 0.1 0.8 -

3.8 1.2 0.7 1.4 0.5 0.2 1.1 
6.1 72 ± 6.9 52.2 0.2 - 1.4 16.1 2.6 25.3 0.8 5.3 0.6 

9.8 0.3 1.5 3.2 1.0 3.2 0.7 1.8 0.7 
GPS 25 3.7 36 ±4.3 45.7 - - 0.7 1.0 2.7 - - - -

8.3 0.6 0.9 1.7 
6.1 6.3 ± 1.5 67.3 - 1.0 - 15.8 6.2 16.2 - 2.9 1.6 

6.4 0.9 7.3 1.3 3.1 1.7 1.6 
GPS 26 6.1 216 ± 17 52.1 - - - 0.8 9.4 1.0 - 0.6 -

7.3 0.5 3.8 0.5 0.6 
7.9 7.1 ± 1.6 70.3 - - 0.2 22.7 16.6 27.9 0.4 7.5 0.4 

4.9 0.4 5.1 3.5 10.3 0.5 0.9 0.4 
GPS 27 9.1 71 ± 6.2 37.2 1.0 2.5 - - 36.7 2.0 0.9 2.2 -

8.8 1.3 1.3 2.6 1.7 1.8 2.1 
GPS 28 8.5 1160 ± 75 74.9 - 0.1 - 11.7 2.3 24.4 0.1 16.5 1.9 

9.0 0.1 3.1 0.8 3.4 0.2 2.1 0.4 

a. Reported as mean (x 104) ± 95% confidence interval (x 10'), n=40 
b. Reported as percent of DAPI-stained organisms, mean ± 95% confidence interval (n>5, minimum of 400 DAPI-counterstained cells) 
c. - = Not Detected (<0.1% of total DAPI Direct Count) 
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Table 4.5 Microbial community structure of GPS 22 and GPS 23 sediments and following aerobic incubations and MICRO-
FISH with [9-14C]phenanthrene. Active cells for GPS 22 indicate microbes associated with silver grain formation in 
MICRO-FISH. 

Microbes GPS 23 GPS 22 
3.7 m bgs 6.1 m bgs Post- 5.5 m bgs 6.7 m bgs 7.9 m bgs Post- Active Cells 

Incubation Incubation 

Total Direct DAPI Count 139 ± 14 653 ± 36 3840 ±386 347 ±25 1450 ± 90 439 ± 58 2000 ±147 809 ±221 
(Cells • gm sediment "') 
Bacteria 82 ± 7.8 420 ± 42 2410 ±329 201 ± 29 911 ± 53 195 ± 33 1670 ±275 452 ±8.2 
(Cells • gm sediment "') 

NDb Archaea NDb ND ND NDb 1.0 ±2.0 23 ±10 ND ND 
(Cells • gm sediment "') 
Proteobacteria 

a - Proteobacteria 0.3 ± 0.5 ND 7.9 ±6.8 0.4 ± 0.6 1.2 ±2.4 13 ± 4.6 ND ND 
0.30%' 0.33% 0.21%^ 0.13% 6.59% 

p - Proteobacteria 1.3 ± 1.5 0.7 ±1.4 194 ± 18 16 ±2 261 ± 68 2.9 ± 1.0 935 ±456 373 ±329 
1.63 % 0.17% 8.07% 7.86% 28.6% 1.50% 56.0% 82.3% d 

y- Proteobacteria 18 ± 6.0 185 ±48 1200 ±421 19 ± 6.6 181 ± 70 70 ±29 173 ±60 45 ±28 y- Proteobacteria 
21.7% 44.1% 50.00% 9.68% 19.9% 35.7% 10.3% 9.84% 

S - Proteobacteria ND ND ND 2.2 ± 4.5 1.5 ± 1.9 ND ND ND 
1.12% 0.17% 

Gram Positive Bacteria 
Actinobacteria 30 ± 4.9 216 ± 35 207 ± 80 125 ± 12 361 ± 73 128 ± 27 50 ±24 9.1 ± 5.5 

36.5% 51.5% 8.59% 62.4% 39.6% 65.8% 3.01% 2.01% 
Firmicutes ND 1.3 ± 2.6 163 ±74 1.5 ±2.0 3.3 ± 4.0 0.6 ± 1.1 3.4 ±5.1 ND 

0.30% 6.76% 0.76% 0.36% 0.29% 0.20% 
CFB Cluster 
Bacteriodetes 4.5 ± 1.5 16 ± 7.2 198 ± 28 5.7 ±23 104 ± 25 32 ± 5.6 9.9 ±11 ND 

5.5% 3.8% 8.22% 2.86% 11.4% 16.3% 0.59% 
Bacteriodes and ND 2.4 ±2.3 ND 1.7 ±1.9 8.0 ±3.2 ND ND ND 

Prevotella genera 0.60% 0.87% 0.88% 

a. Reported as mean ±95% confidence interval (x 104) 
b. ND = not detected 
c. Percent of total Bacteria 
d. Percent of active Bacteria 
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Figure 4.1 Cherokee FMGP site plan and profile. The dark gray contours show the estimated extent of PAH and BTEX source 
material (free product). The light gray contours indicate the approximate aerial extent of the PAH and BTEX 
contamination (2 ng/L). Contour lines indicate the water table elevation shown by the dashed line in the geological 
profile across transect A-B (inset). The red dots on the geological profile represent the microbial sampling depths at 
the locations indicated on the plan view of the site. Total direct DAPI microbial counts (per gram sediment) at each 
sampling location are shown (error bars indicate ±95 % confidence interval, plotted on a logio scale). 
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Figure 4.2 Average microbial community structure on transect A-B related to measured 
concentrations of common terminal electron acceptors and reduced species in 
situ. Shown are the mean percent (relative to Bacteria) of each phylogenetic 
group across all sample depths at each coordinate along transect A-B (GPSS 21, 
GPSS 22, GPSS23, GPSS 25, GPSS 26, and GPSS 28, respectively). The error 
bars indicate the 95 % confidence interval. 
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Figure 4.5 Fluorescence images and autoradiogram following MICRO-FISH assay with 
GPS 22 sediments: Bacteria. Blue cells represent DAPI-stained organisms. 
Cells hybridizing with the EUB338 probe set are shown in red. 27.1% of FISH-
detected Bacteria were associated with silver grain formation indicating growth 
on [9-14C] phenanthrene (inset). Archaea were not detected. Bar in 
autoradiogram represents 10 pm. 
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Figure 4.6 Fluorescence images and autoradiogram on following MICRO-FISH assay with 
GPS 22 sediments: and ^Proteobacteria. Blue cells represent DAPI-stained 
organisms, y-Proteobacteria (hybridizing with the GAM42a probe) are shown in 
red. f}-Proteobacteria (hybridizing with the BET42a probe) are shown in green. 
39.9% of FISH-detected Proteobacteria (image sets 1, 3, and 4) and 25.7% of 
FISH-detected yProteobacteria (image sets 2 and 3) were associated with silver 
grain formation indicating bacteria of these sub-divisions grew on [9-14C] 
phenanthrene. (X- and S-Proteobacteria were not detected. Bar in 
autoradiogram represents 10 fim. 
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Figure 4.7 Fluorescence images and autoradiogram on following MICRO-FISH assay with 
GPS 22 sediments: Actinobacteria. Blue cells represent DAPI-stained organisms 
Actinobacteria (hybridizing with the HGC69a probe) are shown in red. 18.1% 
of all FISH-detected Actinobacteria were associated with silver grain formation 
indicating growth on [9-14C] phenanthrene. Firmicutes (hybridizing to the LGC 
probe set) were not detected. Bar in autoradiogram represents 10 (im. 
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Figure 4.8 Fluorescence images and autoradiogram on following MICRO-FISH assay with 
GPS 22 sediments: Bacteriodetes. Blue cells represent DAPI-stained organisms. 
Bacteriodetes (hybridizing with the CF319a probe) are shown in red, and were 
not associated with silver grain formation indicating they did not grow on [9-
14C] phenanthrene. Bacteria belonging to the Bacteriodes and Prevotella genera 
(hybridizing to the BAC303 probe) were not detected. Bar in autoradiogram 
represents 10 pm. 
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5. WHOLE-CELL HYBRIDIZATIONS AND MICROAUTORADIOGRAPHY TO 

TRACK PHENANTHRENE UPTAKE IN COAL-TAR IMPACTED AQUIFER 

SEDIMENTS 

A paper to be submitted to the Journal of Microbiological Methods 

Shane W. Rogers, Say Kee Ong, and Thomas B. Moorman 

5.1 Abstract 

In order to improve understanding of microbial biodiversity and PAH biodégradation in coal-tar 

impacted sediments, whole-cell hybridizations with rRNA-targeted oligonucleotide probes and 

microautoradiography were used to simultaneously determine the in situ identities and activities of 

individual microbial cells using phenanthrene as a growth substrate. We report adaptations to these 

molecular microbiological techniques that overcome problems caused by the presence of a solid 

phase, coal-tar source material, and sorption of a strongly hydrophobic radioisotopic substrate. 

Microbes were extracted from the contaminated sediments prior to application of whole-cell 

hybridization techniques due to intense background fluorescence caused by the presence of free-phase 

coal tars containing several aromatic hydrocarbons. Significant interference in the autoradiogram was 

observed when the procedure did not include several washes in 50% ethanol-PBS to remove bound 

[9-14C]phenanthrene and/or radioisotopic metabolites from the cell surfaces prior to 

microautoradiography. Although phenanthrene mineralization exhibited a lag phase of 60 hours, 

positive autoradiographic responses could be obtained as early as 36 hours of incubation. Longer 

incubation resulted in significant deviation from the initial microbial community structure and 

activity of /3-Proteobacteria not detected in shorter incubation periods (36 hours and 96 hours). 

Based on the lack of radioactivity associated with other bacterial taxa, the activity of /?• 

Proteobacteria at 252 hours of incubation was attributed to growth on [9-l4C]phenanthrene and/or 

radioisotopic metabolites rather than endogenous respiration of decaying radioactive cell materials. 

This combination of incubation and extraction techniques with whole-cell hybridizations and 

microautoradiography expands the utility of similar cultivation-independent techniques, making 

possible the simultaneous exploration of microbial community structure and complex substrate uptake 

profiles in contaminated sediments. 
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5.2 Introduction 

Advances in technologies for studying small sub-unit rRNA gene sequences have increased 

understanding of biodiversity in natural systems, especially for organisms that have resisted 

cultivation to date. Although knowledge of soil microbial diversity has expanded, little information 

exists linking the structure of microbial communities to specific metabolic functions of organisms 

within the community. In the case of hydrocarbon-contaminated site bioremediation, the structure-

function relationship is of potential importance as regulatory acceptance of in situ bioremediation 

efforts hinge on the ability to definitively attribute decreasing hydrocarbon concentrations to 

microbial degradation, as opposed to abiotic processes that may lend to similar plume-scale behavior 

such as non-linear sorption, dispersion, and volatilization. 

Combined whole-cell hybridization and microautoradiography is one technique that has been 

used to identify microbes active in the uptake of specific substrates in complex environmental 

samples. This technique was first applied by Lee et al. (1999), who visualized the uptake of several 

organic and inorganic substrates by specific cell types in activated sludge. This technique has also 

been applied to other aquatic environmental samples such as oceanic waters and sewer biofilms 

(Ouverney and Fuhrman, 1999; Cottrell and Kirchman, 2000; Ito et al., 2002). Although successful 

with simple substrates in aquatic systems, whole-cell hybridization and microautoradiography has yet 

to be applied to study the uptake of hydrophobic organic compounds by soil microorganisms in 

highly contaminated soils or sediments where the presence of the solid-phase, alternative carbon 

sources, and the hydrophobic nature of the substrate may greatly complicate the procedure. 

Successful application of this technique to contaminated soils and sediments may greatly advance 

understanding of biodiversity and ecosystem functioning in highly contaminated aquifer and estuarine 

systems, leading to more successful modeling and monitoring approaches. 

The goal of this study was to develop effective procedures to combine whole-cell 

hybridizations and microautoradiography for phylogenetically identifying and enumerating organisms 

in coal-tar impacted sediments of a former manufactured gas facility active in the uptake of 

phenanthrene under aerobic conditions. The specific objectives of this work were to (1) identify and 

address potential interference on the autoradiographic response caused by sorption of strongly 

hydrophobic radioisotopic substrates onto cell interfaces (2) identify potential effects of incubation 

time on detection of "active" cells, perturbation of the microbial community structure, and potential 

carbon cycling that may lead to ambiguity in the resulting autoradiographic response. Phenanthrene 

was chosen as a model compound because of its strong hydrophobic nature and its predominance in 

the contaminated sediments. 
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5.3 Materials and Methods 

5.3.1 Initial microbial community structure 

The sediments used in this study were extracted from a coal-tar contaminated aquifer in 

northeastern Iowa in August 2001 and April 2002. The properties of the sediments used in this study 

are listed in Table 5.1. Prior to use, the sediments were homogenized by passing through a #4 sieve 

to remove the gravel fraction. 20 grams of the coal-tar impacted sediments were placed in 50 mL 

screw-cap sterile tubes containing 30 mL 4% paraformaldehyde/phosphate buffered saline (0.13 M 

NaCl, 7mM Na2HP04, and 3mM NaH2P04, pH 7.2), vortexed for 3 minutes, and placed in the 

refrigerator at 4°C for 24 hours. The paraformaldehyde-fixed samples were washed three times in 

phosphate buffered saline (PBS, pH 7.2), and brought to 20 mL in PBS. Extraction of 

microorganisms from the preserved sediments was performed using the method of Unge et al. (1999). 

Briefly, 0.4 g of acid-washed polyvinylpolypirollidone (PVPP) was added to the 50 mL tube 

containing 20 mL preserved sediment-PBS solution and vortexed for 3 minutes. Bulk sediment and 

bound humic material was allowed to settle for twenty minutes and the supernatant was poured into a 

sterile 50 mL tube. 10 mL of PBS was added to the original sediments and the tubes vortexed again 

for 3 minutes. After another settling period of twenty minutes, the supernatant was pooled with the 

original supernatant. This process was repeated one additional time, after which the pooled 

supernatants were vortexed for one minute and centrifuged at 100 x g for 6 minutes. Following 

centrifugation, the supernatants were poured into sterile 50 mL screw-cap tubes. 

5.3.2 Aerobic Incubations 

2 g coal-tar contaminated sediments and 2 mL sterile basal salts medium (2 mM KH2P04, 2 

mM K2HPO4, 9.9 mM NH4C1, 0.5 mM MgCl2*6H20, 0.5 mM CaCl2'2H20, and 0.1 mM FeCl2*4H20, 

pH 7.1), which was sparged with air for 30 minutes, were added to 14 mL amber vials. 1.5 mL shell 

vials containing 1 mL of 2 N sodium hydroxide solution were carefully placed into the vials to serve 

as trap for 14C02 evolved. The vials were carefully sealed with a butyl rubber stopper using an 

aluminum crimp cap. 400,000 dpm of [9-14C]phenanthrene (specific activity, 15 mCi/mmol; Sigma), 

was injected directly into three of the sediment-slurries through the butyl rubber septa, and the vials 

carefully swirled by hand. Three assays were amended with 10 pCi (22,200,000 dpm) [9-

14C]phenanthrene and no sodium hydroxide trap for MICRO-FISH. All assay bottles were incubated 
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at 20°C. 14C02 evolution was monitored in the aerobic assays by sampling the 1 N NaOH solution via 

syringe through the butyl rubber stoppers. The NaOH was added to 13 mL of Ultima Gold XR 

Liquid Scintillation Cocktail (Packard Instrument Company, Perkin Elmer, Downers Grove, IL), and 

the amount of 14C02 evolved was determined by liquid scintillation counting. The headspace on the 

assay vials was purged under vacuum and replaced with fresh air at each sampling interval to 

maintain aerobic conditions. At 36, 96, and 252 hours of incubation, respectively one MICRO-FISH 

assay was sacrificed by adding 10 mL 4% paraformaldehyde to the 14 mL vials. The vials were 

vortexed for three minutes, placed in a 4°C refrigerator for 24 hours, and the microbes extracted from 

the sediments as described above. 

5.3.3 Oligonucleotide Probes and Stains 

The DNA-intercalating dye 4',6-diamidino-2'-phenylindole (DAPI; Sigma, St. Louis, MO) 

was used to stain cells non-specifically. DAPI was stored dry at -20 °C, and prior to use was 

reconstituted at 100 ng (AL-1 in sterile, nanopure water. The oligonucleotide probes used in this study 

are shown in Table 5.2. The oligonucleotide probes were synthesized with either Cy 3 (Cy 3; 

Amersham, Zurich, Switzerland), TAM, or FITC reactive dye covalently bound to the 5'-end 

(Invitrogen Corp., Huntsville, AL). The dye-oligonucleotide conjugates (1:1) were lyophilized and 

stored dry in sterile microfuge tubes at -20 °C in the dark. Prior to use, the dry probes were 

reconstituted in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), covered with aluminum foil, and 

stored at -20 °C. 

5.3.4 Total cell counts 

Total direct DAPI counts were used to identify the proper dilutions for whole-cell 

hybridizations. 0.7 mL of cell suspension was transferred onto 0.8 mL Nycodenz (Nycomed) (density 

= 1.3 g/mL) in sterile 1.5 mL microcentrifuge tubes and centrifuged at 10,000 x g for 15 minutes to 

pellet the remaining sediments. After centrifugation, the top 0.5 mL were discarded, and the next 0.5 

mL (containing the banded microbial fraction) were transferred to sterile 1.5 mL microcentrifuge 

tubes. The microbial fraction was supplemented with 20 |iL of DAPI solution (100 ng gL"1) and 

incubated for 7 minutes in the dark. Following incubation, the entire solution was transferred to a 15 

mL vacuum filtration tower containing a pre-wetted 25 mm diameter polycarbonate filter (0.22 gm 

pore size) and 5 mL of sterile PBS (pH 7.2). The filter was washed three times under vacuum with 3 
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mL each of PBS. The filters were transferred onto slides, mounted with Citifluor mounting medium 

(Citifluor, Canterbury, UK), and examined under a Nikon Eclipse 400 microscope fitted with a digital 

imaging system, high pressure mercury lamp, and UV-2E/C filter. The cells were counted from 

duplicate slides at 600x magnification by randomly counting 20 fields on each slide covering an area 

of 0.0169 mm2 each from a total area of 201 mm2 per filter using Image-Pro Plus software (v. 4.5.1, 

Media Cybernetics, Silver Spring, MD). 

5.3.5 MICRO-FISH 

Density gradient centrifugation with Nycodenz was used to separate soil microorganisms 

from the remaining sediments prior to MICRO-FISH as described above. The banded microbial 

fractions were washed repeatedly in 50% ethanol-PBS until subsequent washes resulted in no 

additional removal of l4C based on liquid scintillation counting. To visualize potential interference in 

the autoradiographic response caused by sorption of radioisotopic phenanthrene to cell surfaces, one 

set of MICRO-FISH was performed on cells not washed in ethanol from the 252 hour sample 

(hybridized with the EUB probe set). The washed pellets or unwashed banded bacterial fraction, 

respectively, were transferred to a 15 mL vacuum filtration tower containing a pre-wetted 25 mm 

diameter polycarbonate filter (0.22 nm pore size) and 5 mL PBS (pH 7.4). The filter was washed 

three times under vacuum with 3 mL each of PBS, transferred cell-side down onto a 22 mm square 

cover glass (No. 2) treated with a 4% solution of 3-aminopropyltriethoxysilane (Sigma, St. Louis, 

MO), clamped between two glass slides using binder clips, and placed in a 42°C oven for 1 hour, after 

which the filter was peeled away leaving the cells adhered to the cover glass. The cells were 

dehydrated using 50%, 80%, and 96% ethanol, respectively, three minutes each, and the cover glasses 

placed cell-size up on microscope slides. The cells were then brought into contact with a 30 jiL drop 

of hybridization buffer (0.9 M NaCl, 20 mM Tris-HCl (pH 7.2), 2.5 mM EDTA, and 0.01% sodium 

dodecyl sulfate (SDS) in the presence of 20-35% formamide (ARCH915, BAC303, HGC69a, and 

SRB385 = 20%; EUB338 (I-III), BET42a, and GAM42a = 30%; ALF968, CF319a, 

LGC354(a,b,c)=35%;NON338=20-35%)) containing 4 ngjiL'1 of the relevant probe(s) and 4 ng-^L™1 

DAPI and covered with a Hybri-Slip (Sigma, St. Louis, MO). The slides were placed into 50 mL 

plastic tubes with ChemWipes® wetted with 2 mL of hybridization solution (humidity chambers) and 

hybridized at 46°C for 90 minutes. Following hybridization, the cover glasses were washed for 15 

minutes at 48°C in the appropriate wash buffer (20 mM Tris-HCl (pH 7.2), 2.5 mM EDTA, 0.01% 
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SDS, and either 308, 102, or 80 mM NaCI depending on the formamide concentration during 

hybridization (20%, 30%, or 35%, respectively)), then carefully dried under a stream of filtered air. 

All autoradiographic procedures were performed in the dark using a method similar to 

Cottrell and Kirchman (2000). Briefly, the cover glasses were dipped in molten (43°C) Kodak NBT-2 

autoradiographic emulsion diluted 2 parts emulsion and 1 part deionized water. After incubation at 

4°C for 10 days, the slides were warmed to room temperature and developed using Kodak Dektol 

developer, a deionized water stop bath, and Kodak fixer, as per manufacturer's instructions. The 

cover glasses were air dried, mounted on clean glass slides using Citifluor API mounting medium 

(Citifluor Ltd., Canterbury, UK), and examined under a Nikon Eclipse 400 microscope using a G-

2E/C filter for Cy3 and TAM-labeled cells, B-2E/C filter for FITC- and FAM-labeled cells, and UV-

2E/C filter to determine the total direct DAPI count. Silver grain formation associated with 

hybridized cells was determined by switching between fluorescence and bright-field modes. Digital 

imaging analysis was performed using Image-Pro Plus (v. 4.5.1, Media Cybernetics, Inc., Silver 

Spring, MD). 

5.4 Results 

5.4.1 Mineralization of [9-4C]phenanthrene 

Figure 5.1 shows 14C02 evolution during the aerobic incubations of the coal-tar impacted 

sediments. A 3 day lag phase was followed by conversion of 25.1 ± 0.9% of the added ,4C to I4C02 

at 360 hours incubation. MICRO-FISH samples were sacrificed at 36 hours (lag-phase, 0.3% 14C02 

evolution), 96 hours (early log phase, 5.3% 14C02 evolution), and 252 hours (late log-phase, 22.3% 

14C02 evolution) of incubation. 

5.4.2 MICRO-FISH: Sorption 

An average of 2.51% of the added 14C was removed from the cells during the first three 

washes in 50% ethanol prior to MICRO-FISH. Based on total direct DAPI counts and assuming 

homogenous distribution of the radioactivity to the cells, this resulted in a cellular radioactivity of 

approximately 0.016 dpm cell"' attributable to sorption of [9-l4C]phenanthrene and hydrophobic 

metabolites alone. Washed cells retained 0.33% of the initial ,4C added to the system, but 

microautoradiography-positive cells represented a much lower percent of the overall microbial 
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community structure based on MICRO-FISH results (see below). Microautoradiography-positive 

cells in the washed assays averaged 0.031 dpm cell"'. 

Figure 5.2 shows the fluorescence image and autoradiogram superimposed and colored by 

image analysis for unwashed cells hybridized with the EUB338 probe set. As can be seen in Figure 

5.2, there was significant interference in the autoradiographic response when the cells were not 

washed prior to MICRO-FISH. 51 ± 1.5% of un-washed DAPI-stained organisms were associated 

with silver grain cluster formation versus 11 ± 3.2% following a 50% ethanol-PBS wash series. 

Increased silver grain formation in the un-washed MICRO-FISH assay decreased the sensitivity of the 

technique as it became difficult to discriminate and attribute silver grain formation to specific cells 

when several cells were spatially located nearby silver grain clusters (increasing the number of false 

positives). 

5.4.3 MICRO-FISH: Incubation time 

When samples were washed prior to processing for MICRO-FISH, microautoradiography 

resulted in autoradiograms in which silver grain formation coincided well with the spatial location of 

cells detected by whole cell hybridizations as shown in their respective fluorescence images (see 

Figure 5.3). The strong association of fluorescently labeled cells and silver grain formation allowed 

for counts of "active cells", defined as those for which the probe-detected cell associates with silver 

grain cluster formation in the autoradiogram. Table 5.3 summarizes the MICRO-FISH results. 

As can be seen in Figure 5.3 and Table 5.3, the fraction of active cells increased with 

incubation time. At 36 hours of incubation only 0.51% of DAPI-detected organisms were associated 

with silver grain formation, as compared to 2.25% and 11.4% at 96 hours and 252 hours, respectively. 

Identification of active cells decreased, however with increasing incubation times, potentially due to 

hybridization errors, growth of microbes not complementary to the probe set used, and/or loss of 

fluorescence signals where silver grain clusters became thick. At early incubation times (36 hours 

and 96 hours), Actinobacteria and y-Proteobacteria correlated to silver grain cluster formation 

indicating that these organisms were active in phenanthrene uptake. At 252 hours incubation, the /3-

Proteobacteria were associated with nearly 10% of the positive autoradiograms. {3-Proteobacteria, y-

Proteobacteria, and Actinobacteria all increased in population with incubation time, but remained 

stationary as a percent of the total microbial community structures. a-Proteobacteria, sulfate-

reducing bacteria, Firmicutes, and Bacteriodetes all increased slightly in population with increasing 

incubation time, but decreased as a percent of the total microbial community structures. Bacteriodes 
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and Prevotella genera (BAC303) were relatively insignificant in all the microbial community 

structures. 

5.5 Discussion 

The results presented in Figure 5.3 and Table 5.3 show that MICRO-FISH can effectively 

identify the uptake of specific hydrophobic organic pollutants by microorganisms in highly 

contaminated soils or sediments. Interferences caused by the presence of the sediments and the 

sorption of the hydrophobic substrate to microbial cell walls are effectively accounted for in the 

procedure. In preliminary studies where separation of the microbes from the contaminated sediments 

was not performed, significant background fluorescence associated with aromatic hydrocarbon 

contamination and soil particles was observed, and made detection of probed cells difficult if at all 

possible (data not shown). 

Although the sorption of 14C to cell surfaces was only 2.1% of the total [9-14C]phenanthrene 

added to the MICRO-FISH assays, sorption of radioisotopic phenanthrene and/or related metabolites 

to cell surfaces caused significant interference in the autoradiographic response. Stringfellow and 

Alvarez-Cohen (1999) measured phenanthrene biosorption on several species of bacteria and 

determined that biomass-water partitioning coefficients (Kp) ranged from 2.5 to 36 Lg biomass"1, and 

were highest in Nocardioforms. Based on the organic carbon content of the sediments used in this 

study and an organic carbon-water partitioning coefficient for phenanthrene (log Koc) of 4.15, the 

sediment-water partitioning coefficient would be approximately 20 to 370 L g sediment"1. These 

numbers are supported by the work of Shimizu et al. (2002), who measured sorption of phenanthrene 

to natural organic matter and synthesized liposome. These researchers determined that the 

equilibrium liposome-water partitioning coefficient was approximately 43% the equilibrium natural 

organic carbon-water partitioning coefficient. Based on the works above, significant sorption of [9-

14C]phenanthrene and related metabolites to microbial cell walls in this study was expected. 

The effects of sorption of radioisotopes may also be exacerbated by incubation time and 

microbial growth. Nejidat et al. (2004) showed that cell hydrophobicity was strongest when cells 

were in stationary phase as compared to cells in early log-phase growth. Based on total DAPI-direct 

microbial counts, microbial growth may have reached stationary-phase by 252 hours of incubation, 

increasing the autoradiographic error (Total Direct DAPI counts were 1.29 x 107 at 252 hours and 

2.00 x 107 at 576 hours (see Table 4.5, post-incubation)). Dehydrating the cells in an ethanol series 
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after transferring them to cover glasses may have removed some cell-bound 14C, limiting false 

positives in the autoradiographic response. 

One interesting aspect of the MICRO-FISH with un-washed cells was that only 51% of the 

cells correlated to silver-grain cluster formation. If homogenous sorption were to occur, it would be 

expected that all cells would yield positive autoradiograms. These results suggest potential 

heterogeneity in cell-surface hydrophobicity may have led to differences in cell radioactivity 

associated with sorption of [9-14C]phenanthrene and related metabolites. In a recent study focusing 

on the isolation of PAH-degrading bacteria from contaminated soils and sediments, Bastiens et al. 

(2000) noted that PAH-degrading bacteria in contaminated soils exhibited significant differences in 

cell wall hydrophobicity which led to differences in PAH-degrading microbes isolated in liquid media 

versus cultivation on PAH-sorbing carriers. Their results would suggest that differences in 

phenanthrene sorption, and thus the autoradiographic response, should be expected. 

In these sediments, significant '4C02 evolution commenced following a 60 hour lag phase 

over which less than 1.5% of the [9-l4C]phenanthrene was respired. However, significant microbial 

growth over the first 36 hours of incubation was observed and was potentially at the expense of other 

carbon sources available in the coal-tar contaminant mixture. Although mineralization of 

phenanthrene was low over the first 36 hours, cells active in the uptake of [9-l4C]phenanthrene could 

be visualized with MICRO-FISH. However, the low number of detections associated with short 

incubation times becomes problematic when enumeration of active cells is desired. Where active 

cells represent less than one percent of the microbial community structure and microscopic field 

contain on average 100 microbes per field, several microscopic fields and/or slides are required to 

obtain a reasonable degree of statistical significance. 

The choice of incubation time presents a trade-off between detection and relevance to in-situ 

conditions. Extending incubation times may allow for less difficulty in enumerating active cells. 

However, increased incubation times resulted in divergence of the microbial community structure 

from the in situ condition. Active cells increased significantly when incubations were extended into 

log-phase as indicated by 14C02 evolution. At early log-phase (96 hours) the total microbial 

populations increased an order of magnitude, but the active cells detected in the MICRO-FISH 

procedure phylogenetically matched that identified in the lag phase at 36 hours incubation. By late 

log phase (252 hours) the total microbial populations increased nearly two orders of magnitude and 

the previously inactive /3-Proteobacteria assimilated 14C, potentially from degradation of [9-

14C]phenanthrene, a radioisotopic metabolite, or by endogenous decay of radioactive cell materials. 

None of the other microbial phylotypes produced silver grain clusters at 252 hours suggesting that the 
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onset of /3-Proteobacteria activity was due to activation on phenanthrene and/or radioisotopic 

metabolites. This suggests increased 14C02 evolution in the early log-phase may have been due to 

growth of previously active bacteria whereas l4C02 evolution in late log-phase may be have been 

associated with both growth of [9-'4C]phenanthrene-degrading bacteria as well as activation of 

previously inactive bacteria on [9-14C]phenanthrene and/or its radioisotopic metabolites. 

5.6 Conclusions 

In this study, whole-cell hybridizations and microautoradiography were effectively interfaced 

to identify phenanthrene-degrading organisms in complex coal-tar polluted sediments. MICRO-FISH 

was shown to be a sensitive molecular marker for identifying and quantifying the activity of 

phenanthrene-degrading organisms in a complex coal-tar contaminated sediments relative to the 

overall microbial community structure. The incubation time used for MICRO-FISH must be 

carefully balanced between obtaining a positive autoradiographic response and limiting divergence 

from the initial microbial community structure. The balance will depend largely on the objectives of 

the study at hand. The results of this study suggest that limited incubation times, even where a lag 

phase is exhibited in the laboratory-scale incubations, may be more appropriate for obtaining useful 

results for inference of the activity of specific microbial phylotypes in-situ. Longer incubation times 

may provide useful information regarding the presence and identification of potential pollutant 

degraders without cultivation, but may not accurately reflect the in-situ condition. 
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Table 5.1 Properties of the coal-tar impacted aquifer sediments used in the study 

Property Value Units 

Grain Size Distribution: 
% Gravel 12.08 

52.92 
% Silt 19.5 
%Clay 15.5 

Dry Bulk Density 1.69 g em"3 

Organic Carbon Content (/L) 0.0015 - 0.026 
Sample Depth 3.0-8.0 mbgsb" 

Phenanthrene 310 mg-kg"1 sediments 
U.S. EPA Priority PAH 1530 mg-kg"1 sediments 

a. Partially adapted from Biyani, 2002 
b. m bgs = meters below ground surface 
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Table 5.2 Target organisms and oligonucleotide probes 

Target Organisms Probe Oligonucleotide Sequence 
(5'-3') 

Fluor b Réf. 

Archaea ARCH915 GTG-CTC-CCC-CGC-CAA-TTC-CT FITC c 
Bacteria EUB338 GCT-GCC-TCC-CGT-AGG-AGT TAM d 

EUB338-II GC A-GCC-ACC-CGT -AGG-TGT e 
EUB338-III GCT-GCC-ACC-CGT-AGG-TGT e 

a-Proteobacteria ALF968 GGT-AAG-GTT-CTG-CGC-GTT FITC f 
P-Proteobacteria BET42a GCC-TTC-CC A-CTT-CGT-TT FITC g 
y-Proteobacteria GAM42a GCC-TTC-CCA-C AT-GCT-TT Cy3 g 
Sulfate-Reducing SRB385 CGG-CGT-CGC-TGC-GTC-AGG FAM d 
Bacteria 
Actinobacteria HGC69a T AT-AGT-T AC-C AC-CGC-CGT Cy3 h 
Firmicutes LGC354a TGG-AAG-ATT-CCC-TAC-TGC FITC 

LGC354b CGG-AAG-ATT-CCC-TAC-TGC FITC 
LGC354c CCG-AAG-ATT-CCC-T AC-TGC FITC 

Bacteriodetes CF319a TGG-TCC-GTG-TCT-CAG-TAC Cy3 
Bacteriodes and BAC303 CCA-ATG-TGG-GGG-ACC-TT FITC j 
Prevotella genera 
Nonsense control NONEUB CGA-CGG-AGG-GCA-TCC-TCA FITC k 

a. 16S or 23 S rRNA position according to Escherichia coli numbering 
b. Fluor = fluorochrome. Fluorescent markers were linked to the 5' end. 
c. Stahl and Amann, 1991; d. Amann et al., 1990; e. Daims et al., 1999; f. Neef, 1997; g. Manz et al., 
1992; h. Roller et al., 1994; i. Meier et al., 1999; j. Manz et al., 1996; k. Wallner et al., 1993 
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Table 5.3 Microbial community structure of sediments In-situ and following MICRO 
FISH with [9-'4C]phenanthrene. 

Taxa Cells • g sediment 
Active Cells (relative to DAPI-stained cells) 

Initial 36 hours 96 hours 252 hours 

Total Direct DAPI 44.1 ± 5.9 189 ± 22.7 362 ± 33.8 1290 ± 123 
0.51 ±0.34% 2.25 ±0.73% 6.2 ±1.10% 

Bacteria 36.1 ± 4.2 136 ± 25.6 234 ± 29.9 1260± 28.5 
0.80 ±0.90% 299 ±244% VA4±3.7j% 

Archaea 0.9 ±0.7 0.6 ±1.3 ND ND 
NDh ND ND 

"Proteobacteria" 
a-Proteobacteria 0.6 ± 0.9 2.4 ±4.6 2.6 ±2.8 3.2± 4.4 

ND ND ND 
P - Proteobacteria 3.5 ± 1.6 ND 39.1 ±21.5 105 ±59.1 

ND ND 1.11 ±0.03% 
y- Proteobacteria 12.0 ±3.1 73.4 ± 16.4 77.6 ± 24.5 365 ± 87.8 y- Proteobacteria 

0.44 ±0.58% 0.56 ±060% 230± A/7% 
Sulfate-Reducing Bacteria 1.7 ±1.3 2.4± 2.4 2.6 ± 2.8 3.2 ± 4.4 Sulfate-Reducing Bacteria 

ND ND ND 
Gram Positive Bacteria 

Actinobacteria 12.5 ± 1.6 58.5 ± 18.2 88.7 ± 30.0 313 ±101 
0.20 ±0.40% 0.31 ±0.41% 1.26 ±0.95% 

Firmicutes 2.7 ± 0.8 11.5 ±4.8 1.7 ±3.3 13.5 ± 13.8 
ND ND ND 

CFB Cluster 
Bacteriodetes 1.7 ± 0.6 1.4 ±1.9 3.0 ± 4.4 5.7± 7.7 

ND ND ND 
Bacteriodes and Prevotella 0.7 ± 0.5 ND 0.7 ±1.5 ND 

genera ND ND ND 

a. Reported as the mean X 10s (±95% confidence interval), 
b. ND = not detected 
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Figure 5.1 Evolution of 14C02 from mineralization of [9-l4C] phenanthrene in parallel 
aerobic incubations with site sediments. 
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Figure 5.2 Fluorescence image and autoradiogram showing significant interference in the 
autoradiographic response due to sorption of [9-14C]phenanthrene onto soil 
microorganisms: Blue cells represent DAPI-stained organisms. Cells 
hybridizing with the EUB338 probe set are colored red by image analysis. Silver 
grain formation indicates growth on [9-14C] phenanthrene. Bar = 10 ftm. 
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Active Cell 

Figure 5.3 Fluorescence images and autoradiograms following MICRO-FISH assay with 
coal-tar impacted aquifer sediments: Bacteria. Blue cells represent DAPI-
stained organisms. Cells hybridizing with the EUB338 probe set are colored red 
by image analysis. Silver grain formation indicates growth on [9-14C] 
phenanthrene. Bar = 5 urn. 
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6. APPLICATION OF WHOLE-CELL HYBRIDIZATIONS AND 

MICROAUTORADIOGRAPHY TO SUPPORT 1ST-ORDER BIODÉGRADATION 

RATE COEFFICIENTS FOR NAPHTHALENE AND PHENANTHRENE ESTIMATED 

WITH ANALYTICAL PLUME-SCALE MODELING 

A paper to be submitted to Applied and Environmental Microbiology 

Shane W. Rogers, Say Kee Ong, and Thomas B. Moorman 

6.1 Abstract 

Whole-cell hybridizations with oligonucleotide probes specific to Archaea and several phyla 

of Eubacteria were used in conjunction with microautoradiography following brief incubations with 

radioisotopic naphthalene and phenanthrene to identify the spatial heterogeneity of specific microbial 

phylotypes degrading naphthalene and phenanthrene in coal-tar impacted aquifer sediments at a 

former manufactured gas plant site in northwestern Iowa. Microscopy revealed visible silver-grain 

density images in the autoradiograms that correlated well to the spatial locations of specific cell types 

identified by the whole-cell hybridization technique. Dominant phylotypes in the microbial 

community structures of sediments following aerobic incubation included Actinobacteria, y-

Proteobacteria, and (3-Proteobacteria, and to a lesser extent Bacter iode tes, and Firmicutes. 

Detection of a-Proteobacteria, sulfate-reducing bacteria, and the Bacteriodes and Prevotella genera 

were variable following incubations. Microautoradiography indicated that the J3-Proteobacteria, y-

Proteobacteria, and Actinobacteria were active in uptake of phenanthrene and naphthalene in these 

sediments, and that active cells comprised less than 5% of the total microbial community. However, 

the presence of the /?•Proteobacteria in the in situ microbial community was overshadowed by that of 

the Actinobacteria and y-Proteobacteria. Cell-specific biotransformation rates of naphthalene and 

phenanthrene were estimated based on specific contaminant uptake profiles of degrading cells as 

determined by whole-cell hybridizations and microautoradiography. The cell-specific 

biotransformation rates of naphthalene were determined to range from 4.7 to 97 pg active cell"1 -d"1, 

and compared favorably to rates estimated with first-order biodégradation rate coefficients from 

analytical plume-scale modeling (0.7 to 19 pg'active ceir'-d"1). Biotransformation rates for 

phenanthrene based on whole-cell hybridizations and microautoradiography in all sediment cores 

were between one and two orders of magnitude greater than model predicted values suggesting that 
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analytical modeling may have underestimated the intrinsic transformation rate of this PAH. Based on 

these results, the MICRO-FISH technique was shown to provide a strong tertiary line of evidence that 

can be quantitatively linked to the in-situ condition. However, specific issues such as appropriate 

incubation times, differences in bioavailability between intrinsic pollutants and inoculated 

hydrocarbons, and limited detections of substrate-active cells must be considered in data 

interpretation. 

6.2 Introduction 

Investigating natural attenuation of PAH compounds at former manufactured gas plant 

(FMGP) sites presents unique challenges due to the physiochemical properties of the primary coal-tar 

constituents including polycyclic aromatic hydrocarbons (PAHs). Many PAH compounds are 

sparingly soluble, typically exhibiting sorption nonlinearities and complex biodégradation patterns 

limited by the bioavailability of sorbed contaminant mass and complicated by the inhibitory and/or 

cometabolic effects of co-contaminating compounds in contaminated soils and sediments. 

As most kinetic models of hydrocarbon biodégradation require physiological characteristics 

and population densities of the microorganisms carrying out the biodégradation process, modeling 

biodégradation of hydrocarbon compounds at contaminated sites may be limited by the ability to 

identify the populations actively involved in the degradation process and to determine their 

population amongst the overall ecology (Hanson et al., 1999). The use of pure cultures or enrichment 

techniques may not be directly appropriate to modeling contaminant depletion on the field-scale as 

they may poorly reflect the site biodiversity or underestimate ecosystem functioning. Perturbation in 

specific microbial phylotypes due to the presence of complex anthropogenic contaminant mixtures 

relative to the uncontaminated background ecology do not allow direct identification of substrate-

specific activity or enumeration of the hydrocarbon degrading population as a subset of the overall 

microbial community structure (Dojka et al., 1998; Langworthy et al., 1998; McNaughton et al., 

1999; Shi et al., 1999; Smit et al., 1997). Because of these difficulties, many researchers revert to 

plume-scale modeling approaches that rely on differences in aqueous concentrations measured at 

several monitoring locations, and which are subject to potential error associated with parameter fitting 

exercises. The accuracy of biodégradation rate coefficients for PAH compounds estimated in these 

types of plume-scale modeling approaches are difficult to reconcile with direct measures of 

biodégradation such as laboratory-scale bioassays, which typically result in exaggerated 

biodégradation rates compared to modeling estimates. 
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Molecular microbiological approaches are fast becoming popular tools for providing more 

detailed data sets valuable for investigations of natural attenuation at contaminated sites. One 

molecular tool, microautoradiography and epifluorescence microscopy (MAR-EM), was first used by 

Fliermans and Schmidt (1975), who stained autoradiographs with fluorescent antibodies to study the 

single-cell activity of Nitrobacter. Meyer-Reil (1978) further expanded the technique by combining 

acridine orange direct counts with MAR to link the number of actively metabolizing cells to the rate 

of uptake of glucose. Modifications of this technique have been used by several other researchers 

including Fuhrman and Azam (1982), who studied thymidine uptake and bacterioplankton growth in 

marine surface waters, and by Tabor and Neihof (1982, 1984), who studied structure-function 

relationships in waters from Chesapeake Bay (for a review of MAR-EM, see Nielsen et al., 1999). 

The introduction of the fluorescent in situ hybridization (FISH) technique (DeLong et al., 

1989) has greatly expanded the utility of MAR-EM. By combining microautoradiography with FISH, 

identification of substrate-active organisms can be done phylogenetically as opposed to 

morphologically, greatly increasing the accuracy of identification. In recent years, several researchers 

have employed combined FISH and microautoradiography to explore specific substrate uptake 

patterns in aqueous environmental samples (Lee et al.,1999; Ouverney and Fuhrman, 1999; Cottrell 

and Kirchman, 2000; Ito et al., 2002). In Chapter 5 of this work, it was shown that whole-cell 

hybridizations and microautoradiography (MICRO-FISH) could be effectively interfaced to identify 

phenanthrene-degrading organisms in complex coal-tar polluted sediments where the presence of the 

solid-phase and the hydrophobic nature of the substrate may greatly complicate the procedure. The 

unique data sets provided by this technique may yield a link between tertiary lines of evidence of 

natural attenuation such as laboratory-scale incubations and secondary lines of evidence such as 

plume-scale modeling and monitoring data. 

In Chapter 3, plume-scale hydrogeological, contaminant, and geochemical data resulting from 

site characterization and monitoring activities were used to estimate first-order biodégradation rate 

coefficients for several PAH and BTEX compounds. In-situ biodégradation activity estimated in 

Chapter 3 was supported by an enrichment of PAH-degrading phylotypes associated with 

contaminated site sediments relative to nearby pristine conditions as well as biodégradation of select 

PAH compounds in laboratory-scale incubations with site sediments in Chapter 4. This work seeks to 

strengthen the case for natural attenuation of PAH compounds at the Cherokee FMGP site by 

interfacing the two data sets through expanded characterization of the microbial cell types active in 

the uptake of phenanthrene and naphthalene in situ. The objectives of this study are to (1) identify the 

spatial heterogeneity in microbial cell types growing on naphthalene and phenanthrene in the coal-tar 
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impacted aquifer underlying the Cherokee FMGP site, and (2) compare and contrast estimates of the 

in-situ biodégradation rates of naphthalene and phenanthrene based on molecular microbiological 

measurements to those of plume-scale analytical modeling approaches to evaluate the potential for 

molecular microbiological tools to support natural attenuation investigations as a third line of 

evidence. Interfacing molecular microbiological characterizations and cell-specific contaminant 

uptake profiles with plume-scale modeling and monitoring data is a new and untried technique for 

supporting plume-scale modeling approaches in support of natural attenuation investigations. The 

strengths and weaknesses of using these specific molecular modeling approaches are discussed. 

6.3 Cell-specific mass transformation rates 

Using molecular microbiological data collected in MICRO-FISH assays, cell-specific mass-

transformation rates can be estimated. These rates can be compared to estimates from plume-scale 

model approaches considering measurements of the intrinsic microbial community structure 

presented in Chapter 4. In this manner, it is possible that tertiary lines of evidence, which are 

traditionally indirect measures of in-situ biodégradation potential, can be applied directly to support 

modeling and monitoring efforts. 

Assuming no dead-end metabolite formation, the total PAH mass transformation in a short-

term aerobic MICRO-FISH incubation is equal to the total PAH converted to CO2 plus the total PAH 

converted to biomass. Considering that 14C02 evolution during the short incubation periods of the 

MICRO-FISH assays (24 to 42 hours) were approximately linear with time and assuming that 

microbial growth was similarly linear, the cell-specific radioactive mass transformation rate of PAH, 

dmuc-PAH ^ can ke calculated from measurements of '4C02 production, radioactivity in the biomass, 
dt 

and microscopic counts of PAH-degrading bacteria based on MICRO-FISH, such that: 

^mi4 C-PAH m\AC02+mUC,B _ M1 

[ l ]  

where ml4co2 and muc,n are the total l4C02 evolved and total radioactivity of the biomass, 

respectively, following MICRO-FISH incubations (|iCi), t is the incubation time (d), XacUW represents 

active cells determined by microscopic counting of cells associated with silver grain cluster formation 

in corresponding autoradiograms (active cells • g sediment"1), Ms is the mass of sediment in the assay 
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(g), and (Xuc-PAH is the specific activity of the radioisotopic PAH (pg PAH • nCi'1). This method 

assumes that only cells that yield positive autoradiograms in microautoradiography are active in 

biodegrading the hydrocarbon of interest. 

MICRO-FISH incubations were performed with coal-tar impacted site sediments. 

Biodégradation of intrinsic contaminant mass during incubations (coal-tar DNAPLs and/or sorbed to 

aquifer solids) must be accounted for in the cell-specific microbial growth and respiration, but are not 

measured in 14C02 evolved or 14C-biomass with liquid scintillation counting techniques. R is a factor 

that describes the ratio of the total bioavai table PAH in the MICRO-FISH incubation (14C-amended 

PAH plus intrinsic bioavailable PAH) to the 14C-amended PAH, such that: 

R = ̂ wcpah + CpahV ' 

^UCPAH 

where MNCPAH is the mass of radioisotopic PAH added to the assay, CpAn is the concentration of PAH 

in the contaminated sediments (pg PAH • g sediment"1), and y/describes the fraction of PAH in the 

sediments that are bioavailable (0 < (//< 1). To determine the total cell-specific PAH mass 

transformation rate from the cell-specific radioactive PAH mass transformation rate of equation 1, 

equation 1 should be multiplied by equation 2 to account for additional microbial growth and 

respiration at the expense of stable-carbon PAH intrinsic to the contaminated sediments: 

dmUC-PAH _ m\iC02+mUC,B P M 

To simplify estimates of PAH uptake rates, it is assumed that there is no biological preference for 

either isotopic form of the PAH pollutant of interest. 

The bioavailability of hydrophobic organic contaminants in aged soils and sediments may 

limit biodégradation rates and thus controls the value of R. There are no consistently reliable 

measures for bioavailability of specific hydrocarbon compounds in soils and sediments. However, 

there exists two extreme cases: all PAH is in the bioavailable form {y/= 1), or there is no bioavailable 

PAH (y/=0). These extremes should provide a range of cell-specific mass transformation rates that 

bracket the actual value. Better methods for measuring bioavailability in different soil and sediment 

types would be helpful in providing more accurate calculations of the mass-transformation rates. 
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Radioisotopic PAHs inoculated into the MICRO-FISH assays are assumed to be completely 

bioavailable over the short periods of incubation. 

In Chapter 3, a 2-D superimposed analytical solution to the fate and transport of PAHs at the 

Cherokee FMGP site was used to estimate first-order biodégradation rates (A) for naphthalene 

(0.0058 d"1) and phenanthrene (<0.0001 d"1). The first-order biodégradation rates were based on the 

Monod model under the assumptions of no growth and a low substrate concentration. Considering 

these assumptions, the mass transformation rate (Chapter 3, Equation 7) is dependent on the mass of 

bioavailable PAH and intrinsic PAH-degrading microbial activity: 

—  =  - A ( M t )  =  - M m  '. M j  [4] 

where MT is the total mass of bioavailable PAH in the system of interest (pg), juM is the maximum 

specific growth rate of PAH-degrading cells (d"1), Bactlvcjn.sltu is the number of PAH-degrading cells in 

situ (cells • g sediment"'), Y is the yield coefficient (PAH-degrading cells • pg PAH"'), and Ks is the 

half-saturation constant (pg • g sediment"1). Because the first-order rate coefficient was derived under 

field conditions assuming no microbial growth, the intrinsic PAH-degrading microbial population 

must be considered when estimating the cell-specific mass-transformation rate. The ratio of active to 

total cell populations per gram sediment in situ was assumed equal to that of the short-term MICRO-

FISH assays. Based on equation 4, the in situ cell-specific mass transformation rate based on the 

plume-scale modeling rate coefficients, ^ 'n~x"u , can be estimated: 
dt 

dmin-sUu 

dt 

A 

^active,in-situ ' ̂ S 

• M r  =  —  A 

^in-situ ' M, 
X„ 
y 

V total 

•  M r  = — X  - M  T  [5] 

where Bin.silu is the total number of cells in situ (cells • g sediment"1), X,„lai is the total number of cells 

in the MICRO-FISH incubations (cells • g sediment-1), and A' is the first-order cell-specific 

degradation rate estimated by plume-scale modeling. The measured cell-specific mass transformation 

rate calculated in equation 3 with MICRO-FISH incubation data can be directly compared to that 

estimated in equation 5 by allowing MT in equation 5 to equal the total mass of PAH of interest in the 

MICRO-FISH assay such that: 
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MT — Mucpah + CPAH if/ • Ms [6] 

and: 

dm, 'in-situ __ •X • {Mucpah + CPAHy/ • Ms ) [7] 
dt 

\4CPAH 

Estimates made in this manner can be compared directly to the range of cell-specific mass-

transformation rates estimated with molecular microbiological measurements using MICRO-FISH. It 

is important to note that zero-order rate coefficients are not being compared to first-order rate 

coefficients. Rather, mass transformation based on molecular microbiological measurements in 

MICRO-FISH is being compared to predicted mass transformation based on plume-scale modeling 

approaches on an equivalent mass PAH degraded per cell per time basis. 

6.4.1 Microbial sampling 

Sediments used in this study were extracted using percussion-probing direct push technology 

at the four locations shown in Figure 6.1. These locations were chosen for study as they represent the 

extent of naphthalene and phenanthrene contaminant plumes measured in situ. Detailed procedures 

on sampling and preservation of sediments are given in Chapter 4. 

6.4.2 Aerobic incubations 

Prior to use, the sediments were homogenized by passing through a #4 sieve to remove the 

gravel fraction. 2 g coal-tar contaminated sediments and 2 mL sterile basal salts medium (2 mM 

KH2P04, 2 mM K2HPO4, 9.9 mM NH4C1, 0.5 mM MgCl2-6H20, 0.5 mM CaCl2»2H20, and 0.1 mM 

FeCl2*4H20, pH 7.1), which was sparged with air for 30 minutes, were added to 14 mL amber vials. 

1.5 mL shell vials containing 1 mL of 2 N sodium hydroxide solution were carefully placed into the 

vials to serve as a trap for 14C02 evolved. The vials were carefully sealed with a butyl rubber stopper 

using an aluminum crimp cap. Approximately 0.18 (xCi (400,000 dpm) [9-14C]phenanthrene (specific 

6.4 Materials and Methods 
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activity, 15 mCi/mmol; Sigma) or 0.079 jaCi (175,000 dpm) [UL-14C]naphthalene (specific activity, 

20 mCi/mmol; Sigma) was injected directly into the sediment-slurries through the butyl rubber septa, 

and the vials carefully swirled by hand. All assay bottles were incubated at 20°C. 14C02 evolution 

was monitored in the aerobic assays by sampling the 1 N NaOH solution via syringe through the 

butyl rubber stoppers. The NaOH was added to 13 mL of Ultima Gold XR Liquid Scintillation 

Cocktail (Packard Instrument Company, Perkin Elmer, Downers Grove, IL), and the amount of 14C02 

evolved was determined by liquid scintillation counting. 

MICRO-FISH assays were performed for phenanthrene with GPS 22, GPS 23, and GPS 25 

sediments and for naphthalene on all sediments based on historical exposure history. MICRO-FISH 

assays were constructed as described above, except they were amended with either 10 ^Ci 

(22,200,000 dpm) [9-l4C]phenanthrene or 10 pCi (22,200,000 dpm) [UL-l4C]naphthalene and 

contained no sodium hydroxide trap to minimize the potential for spillage into the assays. At 24 to 42 

hours of incubation based on 14C02 evolution, individual MICRO-FISH assays were sacrificed by 

directly injecting 10 mL 4% paraformaldehyde to the 14 mL vials. The vials were vortexed for three 

minutes, placed in a 4°C refrigerator for 24 hours, and the microbes extracted from the sediments 

using a modified method of Unge et al. (1999). Briefly, the preserved cell-sediment slurry was 

transferred to a 50 mL sterile tube and brought up to 20 mL in IX PBS (pH 7.2). 0.4 g of acid-

washed polyvinylpolypirollidone (PVPP) was added to each tube and vortexed for 3 minutes. Bulk 

sediment and bound humic material was allowed to settle for twenty minutes and the supernatant was 

poured into a sterile 50 mL tube. 10 mL of PBS was added to the original sediments and the tubes 

vortexed again for 3 minutes. After another settling period of twenty minutes, the supernatant was 

pooled with the original supernatant. This process was repeated one additional time, after which the 

pooled supernatants were vortexed for one minute and centrifuged at 100 x g for 6 minutes. 

Following centrifugation, the supernatants were poured into sterile 50 mL screw-cap tubes, washed 

three times in IX PBS (pH 7.2), and brought up to 20 mL in PBS. 

6.4.3 Radiocarbon Distributions 

Radiocarbon distributions between the l4C02, cell-interfaces, and biomass were measured by 

liquid scintillation counting. 14C02 was measured in parallel bioassays as reported above, and percent 

of the initial radiocarbon spike respired was assumed equal for the MICRO-FISH assays. To measure 

the radiocarbon incorporated in to the biomass, 0.7 mL of cell-sediment suspension were washed 

repeatedly in 50% ethanol-PBS until the wash solution indicated no further removal of l4C (six 
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washes). The washed cell-sediment pellet was brought up to 0.7 mL in IX PBS (pH 8.4) to aid in 

dispersion of the pellet, and transferred onto 0.8 mL Nycodenz (Nycomed) (density = 1.3 g/mL) in 

sterile 1.5 mL microcentrifuge tubes. The tubes were centrifuged at 10,000 x g for 15 minutes to 

pellet the remaining sediments. After centrifugation, the top 0.5 mL was discarded, and the next 0.5 

mL (containing the banded microbial fraction) was measured by liquid scintillation counting. To 

determine the mass of sorbed radiocarbon (parent 14C plus potential metabolites) 0.7 mL of the 

original cell-sediment suspension was transferred onto 0.8 mL Nycodenz and centrifuged as before to 

separate the cells from the remaining sediments. The banded microbial fraction was removed and the 

total 14C associated with this fraction measured by liquid scintillation counting. The sorbed 14C was 

assumed equal to the total unwashed cell-associated 14C minus the total washed-cell-associated l4C. 

6.4.4 Oligonucleotide Probes and Stains 

The DNA-intercalating dye 4',6-diamidino-2'-phenylindole (DAPI; Sigma, St. Louis, MO) 

was used to stain cells nonspecifically. DAPI was stored dry at -20 °C, and prior to use was 

reconstituted at 100 ng pL-1 in sterile, nanopure water. The oligonucleotide probes are shown in 

Table 6.1. The oligonucleotide probes were synthesized with either Cy 3 (Cy 3; Amersham, Zurich, 

Switzerland), TAM, or FITC reactive dye covalently bound to the 5'-end (Invitrogen Corp., 

Huntsville, AL). The dye-oligonucleotide conjugates (1:1) were lyophilized and stored dry in sterile 

microfuge tubes at -20 °C in the dark. Prior to use, the dry probes were reconstituted in TE buffer ( 10 

mM Tris-HCl, 1 mM EDTA, pH 8.0), covered with aluminum foil, and stored at -20 °C. 

6.4.5 Total cell counts 

Total direct DAPI counts were used to identify the proper dilutions for whole-cell 

hybridizations. 0.7 mL cell suspension was transferred onto 0.8 mL Nycodenz (Nycomed) (density = 

1.3 g/mL) in sterile 1.5 mL microcentrifuge tubes and centrifuged at 10,000 x g for 15 minutes to 

pellet the remaining sediments. After centrifugation, the top 0.5 mL was discarded, and the next 0.5 

mL (containing the banded microbial fraction) was transferred to sterile 1.5 mL microcentrifuge 

tubes. The microbial fraction was supplemented with 20 |AL of DAPI solution (100 ng |AL"') and 

incubated for 7 minutes in the dark. Following incubation, the entire solution was transferred to a 15 

mL vacuum filtration tower containing a pre-wetted 25 mm diameter polycarbonate filter (0.22 pm 

pore size) and 5 mL of sterile PBS (pH 7.2). The filter was washed three times under vacuum with 3 
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mL each of PBS. The filters were transferred onto slides, mounted with Citifluor mounting medium 

(Citifluor, Canterbury, UK), and examined under a Nikon Eclipse 400 microscope fitted with a digital 

imaging system, high pressure mercury lamp, and UV-2E/C filter. The cells were counted from 

duplicate slides at 600x magnification by randomly counting 20 fields on each slide covering an area 

of 0.0169 mm2 each from a total area of 201 mm2 per filter using Image-Pro Plus software (v. 4.5.1, 

Media Cybernetics, Silver Spring, MD). 

6.4.6 MICRO-FISH 

Nycodenz density gradient centrifugation of washed cell-sediment suspensions were used to 

separate soil microorganisms from the remaining sediments prior to MICRO-FISH as described 

above. The banded bacterial fractions were transferred to a 15 mL vacuum filtration tower containing 

a pre-wetted 25 mm diameter polycarbonate filter (0.22 |im pore size) and 5 mL PBS (pH 7.4). The 

filter was washed three times under vacuum with 3 mL each of PBS, transferred cell-side down onto a 

22 mm square cover glass (No. 2) treated with a 4% solution of 3-aminopropyltriethoxysilane (Sigma, 

St. Louis, MO), clamped between two glass slides using binder clips, and placed in a 42°C oven for 1 

hour, after which the filter was peeled away leaving the cells adhered to the cover glass. The cells 

were dehydrated using 50%, 80%, and 96% ethanol, respectively, three minutes each, and the cover 

glasses placed cell-size up on microscope slides. The cells were then brought into contact with a 30 

|tL drop of hybridization buffer (0.9 M NaCl, 20 mM Tris-HCl (pH 7.2), 2.5 mM EDTA, and 0.01% 

sodium dodecyl sulfate (SDS) in the presence of 20-35% formamide (ARCH915, BAC303, HGC69a, 

and SRB385 = 20%; EUB338 (I-III), BET42a, and GAM42a = 30%; ALF968, CF319a, 

LGC354(a,b,c) = 35%;NON338 = 20-35%)) containing 4 ng-pL"' of the relevant probe(s) and 4 

ngjtL"1 DAPI and covered with a Hybri-Slip (Sigma, St. Louis, MO). The slides were placed into 50 

mL plastic tubes with ChemWipes® wetted with 2 mL of hybridization solution (humidity chambers) 

and hybridized at 46°C for 90 minutes. Following hybridization, the cover glasses were washed for 

15 minutes at 48°C in the appropriate wash buffer (20 mM Tris-HCl (pH 7.2), 2.5 mM EDTA, 0.01% 

SDS, and either 308, 102, or 80 mM NaCl depending on the formamide concentration during 

hybridization (20%, 30%, or 35%, respectively)), then carefully dried under a stream of filtered air. 

All autoradiographic procedures were performed in the dark using a method similar to 

Cottrell and Kirchman (2000). Briefly, the cover glasses were dipped in molten (43°C) Kodak NBT-2 

autoradiographic emulsion diluted 2 parts emulsion and 1 part deionized water. After incubation at 

4°C for 10 days, the slides were warmed to room temperature and developed using Kodak Dektol 
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developer, a deionized water stop bath, and Kodak fixer, as per manufacturer's instructions. The 

cover glasses were air dried, mounted on clean glass slides using Citifluor AF1 mounting medium 

(Citifluor Ltd., Canterbury, UK), and examined under a Nikon Eclipse 400 microscope using a G-

2E/C filter for Cy3 and TAM-labeled cells, B-2E/C filter for FITC- and FAM-labeled cells, and UV-

2E/C filter to determine the total direct DAPI count. Silver grain formation corresponding to 

hybridized cells was determined by switching between fluorescence and bright-field modes. Digital 

imaging analysis was performed using Image-Pro Plus (v. 4.5.1, Media Cybernetics, Inc., Silver 

Spring, MD). 

6.5 Results 

6.5.1 MICRO-FISH 

Figures 6.2 to 6.4 show fluorescence images and autoradiograms resulting from the MICRO-

FISH assays using GPS 25 sediments. Autoradiography resulted in visible silver-grain density 

images that correlated well to the spatial locations of specific cell types identified by the whole-cell 

hybridization technique. Active cells were identified as those that accumulated silver grain clusters. 

Table 6.2 summarizes the total and active microbial community structure of sediments from 

all core locations for naphthalene and phenanthrene. Incubation resulted in growth of total DAPI-

detected organisms from the in-situ condition presented in Chapter 4. Dominant phylotypes in the 

microbial communities included Actinobacteria, y-Proteobacteria, and /?•Proteobacteria, and to a 

lesser extent Bacteriodetes, and Firmicutes. Detection of a-Proteobacteria, sulfate-reducing bacteria, 

and the Bacteriodes and Prevotella genera were variable following incubations. Detections with the 

EUB338(1,11,111) probe set represented a larger portion of DAPI-detected cells than more specific 

probes for all sediments. The relatively lower detections with phylum- and subphylum-level probes 

may be due to the presence of bacteria not complimentary to the probe set used. 

Microautoradiography indicated that the Proteobacteria, y-Proteobacteria, and 

Actinobacteria were active in uptake of phenanthrene and naphthalene in these sediments. A variable 

number of active cells per microscopic field and the lack of active cells on some images resulted in 

relatively large confidence intervals about the mean probe-detected active cells. For instance, if 100 

DAPI-stained cells per microscopic field are desired, an activity of a specific microbial phylotype of 

0.3% of DAPI stained cells would result in approximately one detection per three microscopic fields. 

However, it can be said that in GPS 22 and GPS 23 sediments DAPI-detected organisms were more 
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active on naphthalene than on phenanthrene. The difference was quite distinct in GPS 22 sediments, 

where 3.76 ± 0.95% of DAPI-detected organisms were active on naphthalene versus 0.51 ± 0.34% on 

phenanthrene. The difference may be due to the competitive effects of alternative carbon sources in 

these highly contaminated sediments, as phenanthrene degradation was eventually observed (see 

Chapter 5). /3-Proteobacteria did not assimilate radioisotopic phenanthrene in GPS 22 sediments but 

were active in the uptake of phenanthrene in GPS 23 sediments. Conversely, y-Proteobacteria 

assimilated radioisotopic phenanthrene in GPS 22 sediments, but not in GPS 23 sediments. The 

reason for this difference is unclear. Active cells were less than 5% of the total microbial community 

following incubations in all cases. 

6.5.2 Radiocarbon Distributions 

Table 6.3 describes the fate of radiocarbons introduced into the MICRO-FISH assays. As can 

be seen in the Table 6.3, naphthalene mineralization ranged from 8.26% to 29.6% of the [UL-

14C]naphthalene added to the assays, accounting for 98.5% to 99.4% of the total naphthalene 

destruction (mineralized plus converted to biomass). Mineralization of phenanthrene was similar to 

naphthalene except in GPS 22 sediments, where phenanthrene mineralization exhibited a lag phase 

resulting in only 0.34% mineralization of added [9-14C]phenanthrene over the 36 hour MICRO-FISH 

incubation reported in this study. 

Sorption of the radioisotopic PAHs and potential metabolites of degradation to microbial cell 

surfaces was significant in all incubations, but followed no clear trend from one sediment location to 

another. Natural microbial communities may contain several bacterial types that exhibit significant 

heterogeneity in cell-surface hydrophobicity leading to differential sorption of hydrophobic organic 

contaminants. It has been posed that sorption of PAHs to the cell surface may pose a selective 

advantage for some organisms that use these compounds as growth substrates, and may be a 

phenotypic characteristic of several PAH-degrading microbial phylotypes such as Actinobacteria 

(Bastiens et al., 2002). However, there are no clear ways no measure differential sorption to cells in 

natural samples. Assuming that sorption was homogenous over the different cell types, the 

radioactivity per microbial cell associated with sorption of the radioisotopes reached on average as 

much as 51.6% of the radioactivity of active cells. This clearly highlights the need for microbial 

wash steps to remove sorbed radiocarbons that may interfere with the autoradiographic response (for 

more details, see Chapter 5). 
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The estimated radioactivity per active microbial cell based on liquid scintillation counting 

and total active cell counts ranged from 0.009 disintegrations per minute (dpm) to 0.094 dpm. This 

activity translates to approximately 0.26-0.50 pg radioisotopic PAH incorporated into each active 

microbial cell. By allowing for 10 days processing time for microautoradiography, 130 to 1350 

disintegrations per active cell occurred. Higher activity cells generally resulted in larger silver grain 

clusters in the autoradiograms. The exception was in GPS 22 sediments that were incubated for 252 

hours, potentially due to a combination of high cell densities on the microscope slides and large silver 

grain clusters that may have encompassed inactive cells (see Chapter 5). 

To explore the effects of incubation time on radiocarbon distributions, a time series was 

performed for GPS 22 sediments with [9-14C]phenanthrene. Sorption onto cells, incorporation of 

radiocarbon into biomass, and 14C02 evolution increased with incubation time as expected. However, 

14C02 evolution accounted for a decreasing percentage of total destroyed [9-l4C]phenanthrene relative 

to total 14C02 evolved plus 14C incorporated into biomass. This may result from the shift in microbial 

cell phylotypes degrading the phenanthrene with time (see Table 5.3), a change in the microbial 

growth phase, or a combination of both. Incorporation of naphthalene and phenanthrene into biomass 

(relative to the total incorporated into biomass plus total l4C02 evolved) was 0.37 to 1.53% and 0.84 

to 5.56%, respectively, for all samples. This is much lower than would be expected for a more simple 

substrate such as glucose, and may reflect partial use of similar alternative carbon sources in the coal-

tar contaminated sediments or specific bacterial strategies to degrading these toxic organic pollutants. 

6.5.3 Cell-Specific Mass Transformation Rates 

Radiocarbon distributions and the average specific contaminant uptake profiles of degrading 

cells were used in conjunction with measurements of the in-situ and MICRO-FISH microbial 

community structures to estimate cell-specific mass transformation rates (pg-d1 active cell"') as 

described in equations 1-7. PAH concentrations measured in the homogenized sediments from cores 

22, 23, 25, and 26 are shown in Table 6.4. Also shown are the average in-situ total DAPI-direct 

counts for each sediment core as reported in Chapter 4, and the percent active cells based on the 

MICRO-FISH assays presented above. The number of degrading cells in situ was determined by 

multiplying the in-situ total direct DAPI-counted organisms in each core by the percent active cells 

determined using MICRO-FISH. 

Table 6.4 shows the cell-specific mass transformation rates measured with the MICRO-FISH 

technique. The minimum values represent the case where all intrinsic naphthalene or phenanthrene 
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mass measured on the sediments were assumed not available for use as a carbon source by the PAH-

degrading microbes (i|/=0). Therefore, these values represent the cell-specific mass transformation 

rates based solely on added radioisotopic PAH. The maximum values represent the case where all 

intrinsic naphthalene or phenanthrene mass measured on the sediments were assumed bioavailable 

(v|/=l). These values represent the maximum cell-specific mass transformation rates, in which 

measured cell-specific 14C-PAH uptake rates were corrected to account for potential uptake of 

intrinsic (stable carbon) PAH compounds. A plume-scale first-order degradation rate coefficient {X) 

for phenanthrene was set to 0.0001 d"1 to obtain cell-specific mass transformation rates as presented in 

equations 5 and 7 for comparison to results of the MICRO-FISH incubations. 

As can be seen in Table 6.4, the ranges of cell-specific mass transformation rates measured 

for naphthalene agreed within an order of magnitude with rates estimated from plume-scale modeling 

approach of Chapter 3. Measured and predicted cell-specific mass transformation rates were most 

similar in sediments of cores GPS 25 and GPS 26. These cores were sampled from a region of the 

contaminated aquifer included in the analytical model of Chapter 3. GPS 22 and GPS 23 were 

sampled in the source region, outside the model boundary. In contrast, cell-specific mass 

transformation rates for phenanthrene based on MICRO-FISH in all sediment cores were 

approximately one to two orders of magnitude greater than predicted values. This reflects the 

discrepancy observed in the low in-situ biodégradation rate predicted by the analytical model in 

Chapter 3 versus the observation of phenanthrene degradation in bioassays presented in Chapter 4. 

The addition of a large mass of readily available PAH no doubt increased mass transformation rates 

to some extent over the in-situ condition. However, it is also likely that at least for the case of 

phenanthrene, the modeling approach used underestimated the mass transformation rate in situ. The 

true rate likely lies somewhere between the two values presented, and the plume-scale biodégradation 

rate would have to be adjusted accordingly to account for the difference and to yield more realistic 

modeling results. To apply the cell-specific contaminant uptake rates to a contaminant fate and 

transport models at the plume-scale, contaminant uptake rates would have to be adjusted to account 

for the difference in bioavailable PAH in the MICRO-FISH assays versus the bioavailable PAHs 

exhibited in situ. 

6.6 Discussion 

Naphthalene and phenanthrene-degrading bacteria were detected in all sediment cores 

analyzed with the MICRO-FISH technique. Phenanthrene-degrading organisms increased both in 
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number per gram sediment and as a fraction of the total microbial community structure as in-situ 

PAH concentrations decreased (lowest in GPS 22 sediments, highest in GPS 25 sediments). This 

suggests that phenanthrene degradation may be subject to some inhibiting factor related to total PAH 

contaminant concentration in situ such as product or substrate toxicity and or competitive inhibition. 

Naphthalene-degrading organisms display no clear trend as a percent of the microbial community 

structure or in numbers per gram sediments following incubations suggesting that these organisms are 

fairly ubiquitous in the contaminated aquifer sediments underlying the Cherokee FMGP site. 

Actinobacteria were active in both naphthalene and phenanthrene degradation in all sediment 

cores tested. The activity of these bacteria in degrading PAH compounds in this coal-tar impacted 

aquifer is supported by their presence in-situ and relationship to previously characterized PAH-

degrading bacteria, as reported in Chapter 4. Similarly, the y-Proteobacteria were active in 

naphthalene and phenanthrene uptake in all sediments except GPS 23, where uptake of radioisotopic 

phenanthrene by y-Proteobacteria was not detected. In most sediments y-Proteobacteria dominated 

the uptake of naphthalene, expect at GPS 26 where Actinobacteria activity increased as a percent of 

the total DAPI-detected organisms. y-Proteobacteria were the second-most commonly detected 

organisms in-situ. /3-Proteobacteria activity was detected on both naphthalene and phenanthrene in 

all sediment cores, except for phenanthrene, GPS 22. This was interesting because the longer-term 

bioassays and MICRO-FISH studies of Chapter 4 indicated a dominating activity of fi-Proteobacteria 

on phenanthrene. The enrichment effect discussed in Chapters 4 and 5 of long-term assays became 

very clear in these studies where short-term incubations were used. The studies of Chapter 4 revealed 

that /3-Proteobacteria comprised only a small portion of the in-situ microbial community structure, 

except in GPS 22 core sediments. The importance of these bacteria in degrading naphthalene and 

phenanthrene in situ is overshadowed by that of the Actinobacteria and y-Proteobacteria. 

The goal of MICRO-FISH is to mimic in-situ conditions by using short incubations, but also 

to allow for enough incorporation of radiocarbon that cells can be detected using autoradiography. 

The 24 to 42 hour incubation times used in this study may be appropriate based on the works of 

others. Using a different isotopic technique to identify naphthalene degrading organisms in soils, 

stable isotope probing (SIP), Padmanabhan et al. (2003) noted the potential importance of short 

incubation times to limit perturbation in the intrinsic microbial community structure. These 

researchers used a 24 hour incubation time for naphthalene. However, for stable isotope probing, at 

least a doubling of active cells is required, as it relies on the construction of microbial DNA with 

carbon from an added 13C-substrate. MICRO-FISH may require lower incubation times to yield 

positive autoradiograms than required by the SIP technique, as either growth or cell maintenance may 
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result in enough 14C-uptake to elicit an autoradiographic response. One key aspect for successful 

application of MICRO-FISH may lie in finding the proper balance between incubation time to get a 

positive autoradiographic result but not to disturb the original microbial community structure. 

Exaggerated incubation times may also result in increased false-positive detections of "active" cells 

due to carbon cycling on metabolic byproducts or cellular decay. Large silver grain clusters in 

autoradiograms that spatially correspond to more than one cell may be a result of long incubation 

times as well, and highlight the importance of using proper dilutions and exposure times in 

performing the microautoradiography technique. Incubation times that are too short may result in a 

low and variable number of silver grain cluster detections per microscopic field making significant 

statistical interpretation difficult. For MICRO-FISH in aqueous environmental samples with 

compounds such as glucose, acetate, amino acids, proteins, chitin, proprionic acid, and formic acid, 

researchers have used incubation times ranging from 1 to 26 hours (Cottrell and Kirchman, 2000; 

Ouvemey and Furhman, 1999; Lee et al., 1999; Ito et al, 2002). 

In the ideal case, the final microbial community structure following MICRO-FISH will be 

very similar to the initial microbial community structure. Therefore, it follows that two assays ran 

with the same source materials but different radiocarbon compounds should still result in similar 

overall microbial community structures at termination of the assays. Similarities or differences in the 

degrading bacterial phylotypes should be revealed solely by microautoradiography. The final 

microbial community structures following MICRO-FISH incubations with radioisotopic naphthalene 

and phenanthrene were similar for GPS 22 sediments, except for a small difference in y-

Proteobacteria. In this case, DAPI-detected organisms only little more than doubled over the in-situ 

condition suggesting that the goal of little perturbation was attained. For GPS 23 sediments, large 

differences in most phylotypes were observed. In particular, y9- and y-Proteobacteria resulted in 

distinctly different activities as well as numbers. The R factors for these incubations were 1.20 and 

1.16 for naphthalene and phenanthrene, respectively, when y/was assumed equal to 1. The large 

mass of bioavailable radioisotope added to these incubations relative to the intrinsic phenanthrene and 

naphthalene mass may have resulted in differential perturbation of the microbial community structure. 

In comparison, the ^-factors for naphthalene and phenanthrene in the GPS 22 MICRO-FISH assays 

(assuming \j/=l) were 9.0 and 6.7, respectively, indicating that the radiocarbon dose was much less 

significant relative to the intrinsic PAH mass. 

Differences in final microbial community structures following short-term incubations 

highlight one difficulty in using MICRO-FISH in that it requires dosing large quantities of 

radiocarbon in a highly available form relative to the concentration of less available aged 
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hydrocarbons intrinsic to the contaminated sediments. Adding 14C-PAH may increase cell-specific 

radiocarbon uptake rates and drive PAH-specific microbial growth leading to a divergence in 

measured mass transformation rates from the true in-situ condition. As the hydrophobicity of the 

substrate of interest increases and it becomes more recalcitrant in the site sediments, it could be 

expected that the error in measured cell-specific mass transformation rates resulting from large 

radiocarbon doses will increase. In such cases, MICRO-FISH may not provide highly reliable 

quantitative estimates of the in-situ mass transformation rates. The use of radioisotopes of larger 

specific activities could help alleviate some of these issues. 

Cell-specific mass transformation rates based on MICRO-FISH incubations for naphthalene 

were surprisingly similar to plume-scale modeling estimates, especially in sediments corresponding to 

the modeled region (GPS 25 and GPS 26). For plume-scale cell-specific mass transformation rates to 

match that of MICRO-FISH in these sediments, the first-order plume-scale degradation rate 

coefficient for naphthalene (A) would have had to have been between 0.0037d"' and 0.0053d"1. The 

first-order degradation rate coefficient for naphthalene from plume-scale modeling in Chapter 3 was 

0.0058d"'. Therefore in this instance, MICRO-FISH results support the plume-scale modeling 

observations. However, for plume-scale cell-specific mass transformation rates to match that of 

MICRO-FISH in the source sediments GPS 22 and GPS 23, the first-order plume-scale degradation 

rate coefficient for naphthalene would have had to have been between 0.033d"1 and 0.086 d"', which is 

still within a reasonable range based on the reported rates of others (see Chapter 2). The discrepancy 

between the two approaches may be a direct result of extending the use of model coefficients to 

sediments originating from outside the modeled region. A higher intrinsic activity may be present in 

source sediments, which are associated with rapid depletion of dissolved oxygen and nitrate, and the 

highest cell densities in situ. Least-squares biodégradation rates, if fitted to this region, would surely 

be higher than those fitted in the plume region. These discrepancies may also reflect limitations 

posed by the intrinsic bioavailability of specific PAHs, dissolved oxygen, and/or specific nutrients in 

situ relative to the optimized conditions in the MICRO-FISH incubations. The microbial community 

may not be transforming naphthalene to its fullest potential in situ. Therefore these results may 

suggest that addition of growth factors such as nutrients and/or bioventing/biosparging in the source 

region may enhance in situ transformation rates of naphthalene. 

MICRO-FISH results suggest that the first-order biodégradation rate coefficient estimated for 

phenanthrene using plume-scale modeling may underestimate the actual biodégradation rate. 

Phenanthrene-degrading bacteria were active in all the sediment cores tested. However, the plume-

scale modeling approach of Chapter 3 yielded a first-order degradation rate coefficient for 
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phenanthrene of less than 0.0001 d"'. For plume-scale cell-specific mass transformation rates to 

match that of MICRO-FISH, the first-order degradation rate coefficient for phenanthrene would have 

to have been between 0.0024d"' to 0.0082 d"1. This is reasonable considering plume-scale estimates 

of others (see Chapter 2). The actual intrinsic degradation rate likely lies between the model fitted 

value of Chapter 3 and the MICRO-FISH value of this work. However, the activity of y-

Proteobacteria and Actinobacteria on naphthalene and phenanthrene in the MICRO-FISH assays 

reflect well the enrichment of these phylotypes in situ as presented in Chapter 4. Based on these 

results, the MICRO-FISH technique may provide a strong tertiary line of evidence that can be 

quantitatively linked to the in-situ condition. 

6.7 Conclusions 

In this study, whole-cell hybridizations and microautoradiography (MICRO-FISH) were 

effectively interfaced to identify the spatial heterogeneity in naphthalene- and phenanthrene-

degrading organisms in the coal-tar impacted aquifer sediments underlying the Cherokee FMGP site. 

Although the overall microbial community structures were only slightly different all sediment cores 

tested, significant heterogeneity in total populations of PAH-degrading organisms and in 

phenanthrene-degrading bacterial phylotypes were observed. PAH-degrading bacteria identified with 

the MICRO-FISH technique comprised less than 5% of the total microbial community and were all of 

the Actinobacteria, (3-Proteobacteria, and y-Proteobacteria phylotypes. However, degradation of 

naphthalene by any specific phylotype did necessarily reflect the activity of those organisms in 

phenanthrene degradation for any particular sediment tested. The results of this study suggest that 

addressing the spatial heterogeneity in PAH-degrading organisms may be more effective for 

describing intrinsic biodégradation potential than investigating the overall microbial community 

structure relative to nearby pristine conditions at complex PAH-contaminated sites. 

MICRO-FISH was shown to be a sensitive molecular marker for identifying and quantifying 

the cell-specific activity of naphthalene- and phenanthrene-degrading organisms, leading to estimates 

of cell-specific mass transformation rates that for naphthalene compared well to estimates based on 

plume-scale modeling approaches. However, molecular microbiological data suggested that plume-

scale estimates of the degradation rate for phenanthrene may underestimate the actual rate of 

bioattenuation in situ. Modeling errors such as this may have significant implications when seeking 

regulatory approval for the use of natural attenuation as a remedial mechanism and highlights the 

potential usefulness of these molecular techniques. The positive identification of both naphthalene-
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and phenanthrene-degrading bacteria in the coal-tar impacted sediments lends strong support for 

natural attenuation of at least low-ring PAH compounds in this coal-tar impacted aquifer. Based on 

the results presented herein, emerging molecular microbiological tools such as MICRO-FISH may 

yield valuable information useful for investigations of natural attenuation at hydrocarbon 

contaminated sites when carefully applied considering the field-scale microbial community structure. 
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Table 6.1 Target organisms and oligonucleotide probes 

Target Organisms Probe Oligonucleotide Sequence 
(5*-3') 

Fluor1 Reference 

Domain-Level 
Archaea 

Bacteria 

"Proteobacteria" 
a-Proteobacteria 

y3-Proteobacteria 

y-Proteobacteria 

Sulfate Reducing Bacteria 

Gram Positive Bacteria 
Actinobacteria 
Firmicutes 

CFB Cluster 

Negative Control Probe 

ARCH915 GTG-CTC-CCC-CGC-CAA-TTC-CT 

EUB338 GCT-GCC-TCC-CGT -AGG-AGT 
EUB338-II GCA-GCC-ACC-CGT-AGG-TGT 
EUB338-III GCT-GCC-ACC-CGT -AGG-TGT 

Bacteriodetes 

Bacteriodes and Prevotella genera 

Nonsense 

ALF968 GGT-AAG-GTT-CTG-CGC-GTT 

BET42a GCC-TTC-CCA-CTT-CGT-TT 

GAM42a GCC-TTC-CCA-CAT-GCT-TT 

SRB385 CGG-CGT-CGC-T GC-GTC-AGG 

~HGC69a TAT -AGT-TAC-CAC-CGC-CGT 
LGC354a TGG-AAG-ATT-CCC-TAC-TGC 
LGC354b CGG-AAG-ATT-CCC-TAC-TGC 
LGC354c CCG-AAG-ATT-CCC-T AC-T GC 

~CF319a TGG-TCC-GTG-TCT-CAG-TAC 

BAC303 CCA-ATG-TGG-GGG-ACC-TT 

"NONEUB CGA-CGG-AGG-GCA-TCC-TCA 

FITC Stahl and Amann, 1991 

TAM Amann et al., 1990 
Daims et al., 1999 
Daims et al., 1999 

FITC Neef, 1997 

FITC Manz et al., 1992 

Cy3 Manz et al., 1992 

F AM Amann et al., 1990 

Cy3 Roller et al., 1994 
FITC Meier et al., 1999 
FITC Meier et al, 1999 
FITC Meier et al, 1999 

Cy3 Manz et al, 1996 

FITC Manz et al, 1996 

FITC Wallneretal, 1993 

a. Fluor = fluorochrome. Fluorescent markers were linked to the 5' end. 
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Table 6.2 Microbial community structure of sediments following MICRO-FISH with [UL-14C]naphthalene and [9-
14C] phenanthrene. 

Taxa Cells • gm sediment 
Active Cells (relative to DAPI-stained cells) 

GPS 22 d GPS 23 GPS 25 GPS 26 

Naphthalene Phenanthrene Naphthalene Phenanthrene Naphthalene Phenanthrene Naphthalene 

Total Direct DAPI 181 ±33.9" 189 ±22.7 1110 ±103 1080 ± 89.5 242 ± 20.7 541 ± 32.7 336 ±50.4 
3.76 ±0.95% 0.51 ± 0.34% /.92±0.4S% /.<?/ ± 0.30% 4.7g±/.32% 3.98±/./4% 3./f ±0*0% 

Bacteria 142 ± 16.6 136 ± 25.6 1050 ±38.8 1050 ± 40.6 231 ± 12.4 532 ± 7.8 307 ±20.3 
2.9J ± /.3J% 0.80 ± 0.90% 2# ± /.47% 0.96 ±0.58% 3.7 J ±2/4% 1.00 ±1.01% 4.# ±228% 

Archaea 4.1 ± 5.0 0.6 ± 1.3 ND 1.8 ±1.7 0.5 ± 0.6 ND ND 
NDb- ND b' NDh- NDk ND* NDh- NDb-

"Proteobacteria" 
a - Proteobacteria 4.4 ± 3.5 2.4 ±4.6 ND 8.6 ± 13.7 ND ND ND 

ND ND ND ND ND ND ND 
P - Proteobacteria 1.8 ± 1.9 ND 26.9 ± 34.2 165 ± 60.5 1.4 ± 1.8 4.4 ± 4.5 20.0 ± 9.5 

0.23 ±0.01% ND 0.10 ±0.01% 0.43 ±0.02% 0.29 ±0.02% 0.15 ±0.01% 0.17 ±0.01% 
y - Proteobacteria 40.6 ±11.8 73.4 ± 16.4 210 ±74.3 116 ±31.4 41J ± 13.1 69.9 ± 30.4 32.8 ± 7.1 y - Proteobacteria 

1.39 ± 1.39% 0.^±0.J&% /./J ±0.9/% ND 239 ±209% o.*/±a&9% 1.16 ±0.73% 
S - Proteobacteriac" 2.7± 2.5 2.4± 2.4 ND 1.6± 2.2 ND ND 13.4 ± 7.0 

ND ND ND ND ND ND ND 
Gram Positive Bacteria 

Actinobacteria 58.0 ± 15.6 58.5 ± 18.2 448 ±64.0 468 ±133 97.0 ±24.0 131 ± 25.9 143 ± 26.7 
0.66 ± 0.44% 0.20 ± 0.40% 0.46 ±0.36% 0.57 ±0.37% 0.19 ±0.25% 0.19 ±0.25% 7.59 ± 0.90% 

Firmicutes 8.4 ± 5.9 11.5 ±4.8 0.9 ± 1.9 4.0 ± 6.6 0.9 ± 1.7 ND 3.3 ± 3.4 
ND ND ND ND ND ND ND 

CFB Cluster 
Bacteriodetes 3.8 ± 2.8 1.4 ± 1.9 9.1 ± 10.3 46.0 ±21.9 9.0 ± 8.4 20.5 ±11.1 5.7 ±5.1 

ND ND ND ND ND ND ND 
Bacteriodes and 0.9 ± 0.9 ND ND ND ND ND ND 
Prevotella genera ND ND ND ND ND ND ND 

a. Reported as the mean X 10s (±95% confidence interval), 
b. ND = not detected 
c. S-Proteobacteria = SRB3 85-detected cells 
d. GPS22 phenanthrene results reported for 36 hour incubation time 
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Table 6.3 Distribution of 14C following MICRO-FISH with [UL-14C]naphthalene and [9-14C]phenanthrene. 

Sediment Radioisotope Incubation Radioactivity per Cell Final distribution of radiocarbon 
Core Time Sorbed *' Biomass b" ,4CO2 14C on Cell 14C in 14C remaining in 

hours Evolved Surfaces Biomass Sediment Slurry 
dpm dpm jxCi fiCi fiCi fiCi 

GPS 22 
Naphthalene 24 0.011 0.052 2.31 0.212 0.036 7.71 

22.J% 206% 0.35% 717% 
Phenanthrene 36 0.006 0.070 0.032 0.040 0.002 9.28 

0J4% 0.43% 0.02% PP. 2% 
96 0.009 0.052 0.50 0.096 0.012 8.75 

1.37% 7.02% 0.7.3% PLJ% 
252 0.016 0.031 2.09 0.235 0.031 7.00 

22.3% 2J7% 0.13% 74. <9% 

GPS 23 
Naphthalene 24 0.006 0.074 1.88 0.124 0.028 8.24 

7&J% 7.27% 0.26% &0J% 
Phenanthrene 36 0.008 0.094 1.22 0.288 0.035 7.81 

717% J.0&% 0J&% &3.J% 

GPS 25 
Naphthalene 42 0.009 0.026 3.04 0.075 0.011 7.14 

2P.F% 0.7.3% 0.77% 6P.6% 
Phenanthrene 42 0.030 0.067 2.66 0.252 0.023 6.42 

2&4% 2.6P% 0.24% 6&6% 

GPS 26 
Naphthalene 24 0.004 0.009 0.85 0.071 0.005 9.34 

&26% 0.69% 0.0J% P7.0% 

a. 

b. 

14C washed from cells prior to the MICRO-FISH technique. Sorption of 14C assumed homogenous across all cell types. Radioactivity 
associated with 14C in biomass not included. 
Active cells only 
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Table 6.4 Estimated cell-specific mass transformation rates based on MICRO-FISH and plume-scale modeling approaches. 

Sediment PAH 
Core 

PAH 
Concentration 

Hg gm sediments'' 

In-Situ 
Total Direct 

DAPI Counta 

Orgs, -gm sediments'1 

% Active Cells 
Based on 

MICRO-FISH 

Cell-Specific Mass Transformation Rate 
pg-d' active cell1 

MICRO-FISH 

Y = 0 xF= i 

Plume-Scale 

¥ = 0 vp= i 

GPS 22 
Naphthalene 

Phenanthrene 

293 

310 

74.5 x 105 

74.5 x 105 

3.76 

0.51 

9.8 

3.7 

97 

24 

0.68 

0.15 

6.8 

1.0 

GPS 23 
Naphthalene 

Phenanthrene 

6.47 

8.97 

39.6 x 105 

39.6 x 105 

1.92 

1.01 

14 

12 

17 

14 

2.5 

0.14 

3.0 

0.16 

GPS 25 
Naphthalene 

Phenanthrene 

0.64 

1.70 

2.11 x 10 

2.11 x 105 

4.78 

3.98 

12 

24 

12 

25 

19 

0.66 

19 

0.68 

GPS 26 
Naphthalene 0.09 11.2 x 10 3.14 4.7 4.8 5.4 5.5 

a. Average value measured in sediment core 
b. Active cells only 
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(a) (b) 

Figure 6.1 Cherokee FMGP site sediment core sampling locations and isoconcentration 
plots of (a) naphthalene and (b) phenanthrene. 
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Active Cells n _ ry 

Figure 6.2 Fluorescence images and autoradiograms from GPS 25 sediments: Bacteria. 
Blue cells represent DAPI-stained organisms. Cells hybridizing with the 
EUB338 probe set are colored red by image analysis. Silver grain formation 
indicates growth on [9-14C] phenanthrene. Bar = 10 (tim. 
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'fî-Proteobacteria 

y-Proteobacteria 

Figure 6.3 Fluorescence images and autoradiograms from GPS 25 sediments: fi-
Proteobacteria and yProteobacteria. Blue cells represent D API-stained 
organisms. Cells hybridizing with the GAM42a probe are colored red by image 
analysis. Cells hybridizing to the BET42a probe are colored green by image 
analysis. Silver grain formation indicates growth on [9-14C] phenanthrene. Bar 
= 10 |um. 
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Actinobacteria 

Figure 6.4 Fluorescence images and autoradiograms from GPS 25 sediments: Archaea and 
Actinobacteria. Blue cells represent DAPI-stained organisms. Cells hybridizing 
with the HGC69a probe are colored red by image analysis. Cells hybridizing 
with the ARCH915 probe are colored green by image analysis. Silver grain 
formation indicates growth on [9-14C] phenanthrene. Bar = 10 pm. 
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7. CONCLUSIONS 

7.1 Closing statements 

Monitored natural attenuation has become an attractive remedial option at coal-tar impacted 

sites due to the difficulties associated with removal of residual coal-tar DNAPLs. However, there are 

relatively few published studies on natural attenuation of these sites. Modeling attenuation of PAH 

compounds typically involves several assumptions including steady-state plumes, linear and 

reversible sorption, and constant dissolution rates. Limitations imposed by these assumptions may 

preclude their usefulness as recent evidence has suggested that PAH sorption and desorption are 

highly non-linear and hysteric processes, and the strength of sorption can vary greatly with different 

geosorbents. Non-reversible sorption and phase change of PAH compounds would perfectly mimic 

biodégradation where plume-scale models are applied to aqueous-phase monitoring data, and may 

lead to incorrect conclusions regarding the fate of specific contaminants in situ. Poor estimates of 

lateral and transverse dispersivity could lead to gross error in estimating degradation rate coefficients. 

There is evidence from published studies that alternate electron acceptors (other than 

dissolved oxygen) are being consumed in plumes emanating from coal-tar sources at various sites. 

However, most studies present little to no direct evidence that the exhibition of specific geochemical 

environments correlate with the biodégradation of PAH rather than co-contaminating compounds 

such as the monoaromatic hydrocarbons. Specific identification of PAH-degrading microbes is rarely 

performed. Most studies of natural attenuation of PAH compounds at coal-tar impacted sites have 

continued to regard natural microbial communities as a homogenous "black box". Natural microbial 

communities are dynamic in composition and activity in time and space, and therefore the microbial 

"black box" of these complex sites should not be assumed homogenous and consistent. 

Tertiary lines of evidence may be necessary to support efforts of monitored natural 

attenuation at PAH contaminated sites. The classical approach is incubation of site sediments under 

specific redox conditions to "screen" the sediments for biodégradation potential. In many cases these 

studies affect the soil or sediment microbial community structure from that of the in situ condition, 

resulting in ambiguity regarding the applicability of laboratory results to modeling and monitoring 

efforts. Emerging molecular microbiological approaches may be well suited for bridging the gap 

between laboratory and field-scale studies. 

In Chapter 3, analytical fate and transport and lumped hydrocarbon geochemical mass 

balance modeling were used to estimate biodégradation of select PAHs and monoaromatic 
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compounds. Both models produced mass degradation rates within the same order of magnitude 

mutually supporting their results. Biological activity in the contaminated aquifer was evidenced by 

standard heterotrophic plate counts in the contaminant source and plume region relative to 

background heterotrophic plate counts from nearby pristine groundwater samples. This work was 

significant in that it showed that it is possible to arrive at similar degradation rates predicted by a 

superposition of reactive transport analytical solutions with a terminal electron acceptor mass balance 

approach to estimate contaminant depletion in a hydrogeologically (variable groundwater flow 

direction) and chemically complex (commingled plumes) contaminated system, lending support to the 

intrinsic attenuation process. 

In Chapter 4, the in situ microbial community structure and mineralization of select PAHs in 

aquifer sediments of the Cherokee FMGP site were investigated spatially using whole-cell 

hybridizations and incubations with site sediments under select redox conditions exhibited at the site 

level. Whole cell hybridizations revealed that Actinobacteria, y-Proteobacteria, Bacteriodetes, and 

fi-Proteobacteria were enriched in the contaminated aquifer and dominated the aerobic (>1 mg-L"1 

dissolved oxygen) intrinsic microbial community structure. Anaerobic regions of the aquifer 

exhibiting elevated sulfide concentrations were enriched in sulfate-reducing bacteria, supporting the 

aqueous geochemical environments observed in groundwater monitoring. Laboratory-scale 

incubations with site sediments under aerobic conditions resulted in up to 61% mineralization of 

naphthalene and 42% mineralization of phenanthrene in all affected sediments tested. Mineralization 

of naphthalene in laboratory-scale incubations was observed in anaerobic nitrate-, sulfate- and 

iron(III)-amended incubations and corresponded to aqueous biogeochemical indicators measured in 

situ. Mineralization of phenanthrene in anaerobic iron-amended assays was also observed. 

Enrichment of /3- and y-Proteobacteria in the microbial communities following aerobic incubations 

indicated that bacteria of these sub-phyla were active in PAH degradation. Whole-cell hybridizations 

and microautoradiography confirmed these results but also indicated that Actinobacteria were active 

in the uptake of [9-14C]phenanthrene, even though their populations declined in aerobic incubations. 

When compared to the in situ microbial community, it could be seen that three of the four enriched 

phylotypes observed in the aquifer correlated to organisms shown to be active on phenanthrene using 

whole-cell hybridizations and microautoradiography. 

The results of the work in Chapter 4 have significant implications for studies that hypothesize 

that enrichment of specific microbial phylotypes in contaminated sediments relative to nearby pristine 

sediments can be used as a marker for pollutant-degrading microbes. In this study, the enrichment of 

Bacteriodetes could not be linked to the uptake of the model PAH, phenanthrene, even though they 
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were enriched in contaminated sediments in situ. More significantly, these results show conclusively 

that uptake of specific pollutants in laboratory-scale incubations may not be reflected well by 

enrichment of specific phylotypes following incubation in complex contaminated environmental 

media. Considering the activity of the Actinobacteria in the uptake of phenanthrene implied by 

whole-cell hybridizations and microautoradiography, these organisms could be of the most important 

PAH-degraders in situ, even though their populations declined in aerobic incubations. 

Chapter 5 presents procedures for interfacing whole-cell hybridizations and 

microautoradiography (MICRO-FISH) to identify phylotypes active in specific PAH uptake in coal-

tar DNAPL contaminated sediments. This work addressed potential interferences in microbial 

activity and false positive autoradiographic detections caused by extended incubation times or 

sorption of strongly hydrophobic radioisotopes to microbial cell walls. It was determined that 

extensive autoradiographic errors result when several washing steps with 50% ethanol-PBS to remove 

bound hydrophobic radiocarbon substrate and/or metabolites of degradation from microbial cells 

walls prior to performing MICRO-FISH were not performed. The choice of incubation time for the 

MICRO-FISH procedure was determined to be a trade-off between detection and relevance to in-situ 

conditions. Limited incubation times, even where a lag phase is exhibited in the laboratory-scale 

incubations, may be more appropriate for obtaining useful results for inference of the activity of 

specific microbial phylotypes in-situ. Longer incubation times may provide useful information 

regarding the presence and identification of potential pollutant degraders without cultivation, but may 

not accurately reflect the in-situ condition. This work presented a new and untried technique for 

tracking substrate-uptake to specific microbial types in complex contaminated environmental samples 

that may pose distinct advantages for investigating intrinsic remediation potential at several 

contaminated sites. 

Chapter 6 describes the use of the MICRO-FISH technique in support of intrinsic 

degradation of PAH compounds at the Cherokee FMGP site. Through the use of this technique, 

naphthalene and/or phenanthrene-degrading Actinobacteria, j3-Proteobacteria, and y-Proteobacteria 

were detected in all sediment cores tested, but comprised less than 5% of the total intrinsic microbial 

communities. Phenanthrene-degrading bacterial activity was inversely proportional to contaminant 

concentrations in the site sediments suggesting that organisms of the phenanthrene-degrading 

phenotype may have been sensitive to product or substrate toxicity and/or competitive inhibition. 

Naphthalene-degrading organisms were determined to be fairly ubiquitous in the contaminated 

aquifer, representing a similar percent of the microbial community structure following MICRO-FISH 

assays at all locations tested. 
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In most sediments, y-Proteobacteria dominated the uptake of PAHs. However, the studies 

presented in Chapter 4 indicated that y-Proteobacteria were the second-most common organisms in-

situ after the Actinobacteria. This suggests that alternative carbon sources had a strong impact on 

bacterial growth in MICRO-FISH incubations or that the Actinobacteria may posses some selective 

advantage for growth in the coal-tar impacted sediments in situ. f5-Proteobacteria comprised only a 

small portion of the in-situ microbial community structure, except in GPS 22 core sediments. The 

importance of these bacteria in degrading naphthalene and phenanthrene in situ is overshadowed by 

that of the Actinobacteria and y-Proteobacteria. 

Cell-specific biotransformation rates of naphthalene were estimated based on MICRO-FISH 

and compared well to estimates based on the best-fit first-order degradation rate coefficients 

presented in Chapter 3. Cell-specific phenanthrene biotransformation rates estimated with best-fit 

first-order degradation rate coefficients from plume-scale modeling were one to two orders of 

magnitude lower than that measured in MICRO-FISH studies. This may suggest that plume-scale 

modeling provided overly conservative estimates of phenanthrene degradation rates. However, large 

doses of readily available l4C-PAH in order to elicit an autoradiographic response may have increased 

cell-specific radiocarbon uptake rates in MICRO-FISH incubations leading to a divergence in 

measured mass transformation rates from the true in-situ condition. These discrepancies may also 

reflect limitations posed by the availability of specific growth factors in situ relative to the optimized 

conditions in the MICRO-FISH incubations. Thus, the in situ microbial community may not be 

transforming naphthalene and phenanthrene to its fullest potential. The results of this study suggest 

that specific engineered enhancements to the natural attenuation process such as addition of nutrients 

and/or bioventing/biosparging in the source region near sediment cores GPS 22 and GPS 23 may be 

effective for increasing biodégradation rates of coal-tar contaminants at this site. 

7.2 Recommendations for future work 

As the trend in natural attenuation policy shifts from merely displaying disappearance of 

contaminants at the field-scale to determining precisely the fate of the compounds (the definitive 

reasons for the depletion), the circumstantial evidences of attenuation processes will need to be 

supported by more direct evidence. Future studies will require a shift toward methods that better 

describe source releases and specifically track the fate and attenuation of PAH compounds from 

dilution, sorption, and biodégradation processes. These methods must have the capability of opening 
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the microbial "black-box" at contaminated sites and allow the study of the specific microbiological 

fate of contaminants under heterogeneous conditions. 

Interfacing molecular microbiological characterizations and cell-specific contaminant uptake 

profiles with plume-scale modeling and monitoring data is a new and untried technique for supporting 

plume-scale modeling approaches in support of natural attenuation investigations. New approaches to 

determining structure-function relationships in environmental systems such as the coupled molecular 

approaches of this study provide more realistic identification of the activity of select microbial types 

on specific substrates of mixed systems necessary to improve modeling efforts at complex 

contaminated sites. Where successfully applied, the potential applications of this technology for 

investigating the biological fate of specific pollutants in engineered systems and the environment are 

vast. There are many thousands of contaminated aquifers, estuaries, rivers, and harbors with different 

pollutants that need to be restored. To advance the application of biotechnology for the remediation 

and restoration of these sites, specific information on pollutant uptakes are needed to further improve 

remedial technologies. Cataloging specific information regarding microbial communities populating 

extreme environments such as coal-tar polluted aquifers may lead to a better understanding of the 

relatedness of specific microorganisms involved in the degradation process globally. Investigations 

of intrinsic bioremediation potential of specific pollutants should use similar integrative approaches to 

link site-scale data to laboratory-scale data, thus validating conclusions drawn from field-scale 

studies. 

From the results of this study, four primary areas of future research were identified: 

1. A more detailed phylogenetic characterization of the microbial community structure using 

community profiling or cloning techniques should be performed in these coal-tar impacted 

sediments to: 

i. better identify known PAH-degrading phylotypes present in the microbial 

community, especially within the Actinobacteria, ̂ -Proteobacteria, and y-

Proteobacteria 

ii. catalogue the microbial community profile for comparison to other PAH-degrading 

microbial communities 

iii. aid in developing more specific oligonucleotide probe sets relative to the dominant 

PAH-degrading bacteria that can be used as tools for future monitoring activities 

2. The potential for anaerobic PAH degradation in these coal-tar impacted aquifer sediments 

should explored in further detail based on the potential for anaerobic transformation of 
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pollutant mass suggested by geochemical mass-balance modeling and mineralization of 

naphthalene and phenanthrene in anaerobic laboratory-scale incubations. In particular: 

i. Anaerobic PAH degrading organisms in sediments of cores GPS 23, GPS 25, and 

GPS 27 should be cultivated and classified. 

ii. Nitrate-reducing activity of anaerobic PAH-degrading isolates in GPS 23, iron-

reducing activity in anaerobic PAH-degrading isolates of GPS 25, and sulfate-

reducing activity in isolates of GPS 27 should be explored. 

iii. The specific PAH uptake rates and potential for intrinsic remediation of coal-tar 

PAHs by these organisms in situ should be identified. 

Numerical and/or stochastic plume-scale models with the capability of integrating molecular 

microbiological data of the sort generated in this study should be constructed and evaluated in 

terms of the advantages and limitations in predicting contaminant plume behavior. 

Potential limitations and improved applications of the MICRO-FISH technique should be 

explored including: 

i. Variability in cell-specific substrate-uptake profiles posed by varying radiocarbon 

doses for strongly hydrophobic compounds with low intrinsic bioavailable 

contaminant mass relative to dosed contaminant should be quantified. 

ii. More detailed guidelines for obtaining statistically significant sample sizes with a 

relevant number of active microbial phylotypes for microscopic techniques should be 

established. 

iii. Methods to quantify differential uptake rates of radioisotopic substrates to specific 

microbial phylotypes based on differences in the size of associated silver grain 

clusters should be established to improve estimates of the specific activity of 

different bacterial types in contaminated sediments. 

iv. Coupled application of stable isotope probing and MICRO-FISH should be 

investigated to exploit the strengths of each technique. Stable isotope probing may 

provide detailed taxonomic characterizations of degrading microbial phylotypes that 

could be used to establish specific oligonucleotide probe sets for MICRO-FISH. 

MICRO-FISH could then be used to quantify the specific activity of individual PAH-

degrading phylotypes to determine the relative importance of each in biodégradation 

activity. This level of detail may enhance data sets for environmental modeling and 

lead to specific oligonucleotide and/or PCR probe sets relevant to PAH-degrading 

organisms for future monitoring efforts. 
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APPENDIX A. GROUNDWATER SAMPLING DATA 
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Table A la Measured aqueous geochemical characteristics at select monitoring locations 

Analyte 
(Units) 

MW 4t 

3.05 m 
354.84 m msl 

GMW 19 
1.22 m 

356.8 m msl 
355.7 m msl 

GPW 18 
0.61 m 

356.0 m msl 
352.4 m msl 

GPW 14 
0.61 m 

356.3 m msl 
353.2 m msl 

Total Hardness 
(mg/L as CaCOi) 

586 504 
583 

- -

Alkalinity 
(mg/L as CaC03) 

298 330 
403 

- -

Calcium (mg/L) 143, 150 150 
170 

196 
193 

138 
168 

Magnesium (mg/L) 37.7, 43 26 
35 

56.5 
52.5 

41.3 
54.8 

Sodium (mg/L) 52, 66 32 
90 

55 
83.4 

84.1 
110 

Potassium (mg/L) 3.9, 4.5 5.8 
3.8 

4.7 
4.3 

3.9 
4 

Ferrous Iron (mg/L) ND, 0.02 0.01 
ND 

ND 
0.2 

0.09 
0.1 

Total Iron (mg/L) 0.01 ND, 0.02 
ND, 0.01 

0.16, 0.34 
0.03,0.31 

ND, 0.23 
0.18, 0.46 

Total Manganese (mg/L) ND ND, 0.453 
ND, 0.034 

0.146 
0.316 

0.137 
0.359 

Chloride (mg/L) 122, 125 22.7 
15.6 

138 
142 

134 
246 

Sulfate (mg/L) 110, 160 140, 160 
200, 210 

100, 180 
100, 220 

110, 130 
100, 150 

Sulfide (mg/L) 0.002, 0.005 ND 
ND 

0.014 
0.002 

ND 
0.001 

Nitrate+Nitrite (mg/L as N) 14.0, 16.5 2, 2.8 
12, 14 

1.8, 12 
1.9, 11 

3,7.8 
11, 14 

Nitrite (mg/L as N) 0.005, 0.008 0.006 
0.005 

0.005 
0.004 

0.013 
0.022 

Ammonia (mg/L as N) ND ND 
ND 

0.05 
0.01 

0.09 
0.02 

Total Phosphorus (mg/L) ND ND 
ND 

- -

Ortho-Phosphate (mg/L) ND - ND 
ND 

ND 
ND 

Dissolved Oxygen (mg/L) 6.1 0.7 
4.43 4.4 5.6 

Temperature (°C) 10.5, 13.2 10.9 
10.6 14.6 16.9 

pH 7.07 7.22 
7.03 

- -

Electrical Conductivity (nS) 880, 1328 939 
1286 1262 1327 

Redox Potential (mV) 41,91 33 
57 40 73 

Turbidity (NTU) 5.3 3.75 
2.94 

- -

Plate Count (CFU/mL) 280, 63 3 
1 

T Monitoring well designation, screen length, anc screen midpoint(s) 
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Table A.lb Measured aqueous geochemical characteristics at select monitoring locations 

Analyte 
(Units) 

MW 11 
1.52 m 

345.34 m msl 

GMW 22 
1.22 m 

347.55 m msl 

MW 5 
3.05 m 

357.14 m msl 
352.35 m msl 

GMW 16 
1.22 m 

354.6 m msl 
352.0 m msl 

Total Hardness 
(mg/L as CaCCh) 

822 493 703 
551 

434 
358 

Alkalinity 
(mg/L as CaC03) 

484 434 434 
400 

475 
440 

Calcium (mg/L) 200, 215 120 210, 228 
160, 189 

160 
150 

Magnesium (mg/L) 55, 57 34 38.0, 42.6 
41.0, 47.5 

38 
39 

Sodium (mg/L) 57.4, 62 81 26, 26.8 
72, 82 

48 
85 

Potassium (mg/L) 3.6, 3.7 ND 4.3,5 
3.4, 3.4 

5.7 
2.7 

Ferrous Iron (mg/L) 0.03, 1.73 0.01 0.02, 0.11 
0.90, 1.46 

6.40 
1.39 

Total Iron (mg/L) 1.73, 1.8 0.03 0.02 
1.13, 1.60 

8.35 
1.73 

Total Manganese (mg/L) 1.00, 1.64 0.4,0.61 1.15, 1.81 
1.30, 2.25 

0.23 
1.25 

Chloride (mg/L) 136, 136 48 26.6, 38 
79.5, 173 

36.5 
92.8 

Sulfate (mg/L) 160, 170 20, 64 185, 230 
155, 160 

95 
136 

Sulfide (mg/L) ND, 0.001 ND 0.005, 0.012 
0.002, 0.003 

ND 
0.008 

Nitrate+Nitrite (mg/L as N) 0.3, 0.5 0.035 2.8, 4.2 
3.3, 8.7 

0.51 
0.84 

Nitrite (mg/L as N) 0.007,0.025 0.005 0.012, 0.029 
0.38, 0.78 

0.008 
0.287 

Ammonia (mg/L as N) ND, 0.12 ND ND, 0.01 
ND, 0.01 

7.15 
0.07 

Total Phosphorus (mg/L) 0.12 0.12 ND 
ND 

ND 
ND 

Ortho-Phosphate (mg/L) ND - ND 
ND 

-

Dissolved Oxygen (mg/L) 1.2 0.88 0.3 
t 

0.27 
1.52 

Temperature (°C) 10.5, 11.6 12.6 9.2, 14.2 
t 

10.9 
11.7 

pH 6.85 7.05 7.1 
t 

7.21 
7.12 

Electrical Conductivity (^S) 1080, 1564 1086 1050, 1262 
t 

1213 
1361 

Redox Potential (mV) -6 2 -38, 44 
t 

-92 
-73 

Turbidity (NTU) 2.5 7.92 4.12 
t 

2.04 
2.20 

Plate Count (CFU/mL) 36, 11, 160 ND 7 
4200, 6820 

13 
ND 
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Table A. le Measured aqueous geochemical characteristics at select monitoring locations 

Analyte 
(Units) 

Total Hardness 
(mg/L as CaC03) 

GMW 15 
1.22 m 

354.1 m msl 
352.3 m msl __ 

526 

GMW 14 
1.22 m 

349.6 m msl 

GMW 13 
1.22 m 

353.0 m msl 
350.2 m msl 

GMW 20 
1.22 m 

348.8 m msl 

Analyte 
(Units) 

Total Hardness 
(mg/L as CaC03) 

GMW 15 
1.22 m 

354.1 m msl 
352.3 m msl __ 

526 
483 850 

273 
522 

Alkalinity 
(mg/L as CaC03) 

405 
428 

504 802 
287 

514 

Calcium (mg/L) 170 
150 

100 217, 190 
85, 58 

150 

Magnesium (mg/L) 46 
40 

24 59, 53 
24, 14 

40 

Sodium (mg/L) 48 
100 

170 304, 300 
311, 150 

220 

Potassium (mg/L) 4.2 
2.6 

2.6 3.3, 3.0 
2.7, 8.1 

2.9 

Ferrous Iron (mg/L) 0.31 
2.28 

0.26 0.85, 0.77 
0.65, 0.08 

0.34 

Total Iron (mg/L) 0.35 
2.29 

0.25 1.39, 1.21 
0.22, 0.46 

0.48 

Total Manganese (mg/L) 1.25 
1.60 

0.30 0.43, 0.26 
0.27, 0.18 

0.17 

Chloride (mg/L) 83.2 
141 

47.4 311,249 
138,61.3 

177 

Sulfate (mg/L) 175 
138 

175 110, 110 
150, 130 

145 

Sulfide (mg/L) 0.005 
0.003 

0.52 0.001, ND 
1.93,0.073 

0.65 

Nitrate+Nitrite (mg/L as N) 0.31 
0.20 

0.91 0.51,0.31 
1.42, 0.61 

0.60 

Nitrite (mg/L as N) 0.005 
0.005 

0.006 0.005, 0.006 
0.038, 0.013 

0.006 

Ammonia (mg/L as N) 0.05 
0.03 

0.16 0.38, 0.42 
0.30, 0.41 

0.62 

Total Phosphorus (mg/L) ND 
ND 

ND 0.19 
0.26 

0.14 

Ortho-Phosphate (mg/L) - - 0 
0.3 

-

Dissolved Oxygen (mg/L) 0.25 
0.26 

0.49 0.6, 0.37 
0.7 

0.43 

Temperature (°C) 10.1 
10.9 

10.4 14.2, 11.3 
14.4 

11.5 

PH 6.96 
7.16 

7.04 7.02 7.16 

Electrical Conductivity (|iS) 1298 
1421 

1284 2050, 2440 
1870 

1848 

Redox Potential (mV) -17 
-87 

-194 -13,-18 -247 

Turbidity (NTU) 13.7 
14.2 

28.5 4.8 2.08 

Plate Count (CFU/mL) ND 
2 

14 440 
18000 

34 
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Table A.2a Average contaminant concentrations measured in monitoring wells at the Cherokee FMGP Site 

Monitoring 
Well/ 
Well Nest 

Average Groundwater Concentrations fue/L) 
BTEX (1-Ring) 2-Ring PAH 

Monitoring 
Well/ 
Well Nest 

Benzene Toluene Ethylbenzene Xylenes Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 

MW-01 <1 <1 <1 <1 <0.1 <0.2 <0.2 

MW-02 1.3 <1 <1 <1 2.2 <0.2 <0.2 

MW-03 15.4 4.3 87.9 127 759 479 20.4 

MW-04 <1 <1 <1 <1 <0.1 <0.2 <0.2 

MW-05 293 74.2 176 232 790 124 98.3 

MW-06 2.3 <1 2.0 7.7 0.5 8.3 <0.2 

MW-07 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-08 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-09 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-10 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-11 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-12 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-13 29.8 <1 10.3 13.5 62.2 91.5 <0.2 

MW-14 7.6 <1 5.54 20 1.7 10.4 <0.2 

MW-15 544 48.9 553 376 2400 473 19.2 

MW-16 831 213 754 689 3578 473 144 

MW-17 5.0 <1 1.75 <3 42.2 29.4 0.5 

MW-18 <1 <1 <1 <3 0.6 <0.2 <0.2 

MW-19 <1 <1 <1 <3 0.1 <0.2 <0.2 

MW-20 85.0 <1 22.4 16.6 2.0 1.2 <0.2 

MW-21 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-22 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-23 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-24 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-25 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-26 <1 <1 <1 <3 <0.1 <0.2 <0.2 

MW-27 41.0 <1 5.0 41.9 4.1 54.3 <0.2 

MW-28 <1 <1 <1 <3 <0.1 <0.2 <0.2 
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Table A.2b Average contaminant concentrations measured in monitoring wells at the Cherokee FMGP Site 

Monitoring Average Groundwater Concentrations (us/L) 

™!!!L. 3-Ring PAH 4-Rl.gPAH 
Well Nest 

Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Pyrene Chrysene Benzo(a) 
Anthracene 

Fluoranthene 

MW-01 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-02 <0.2 <0.2 <0.2 <0.1 <0.2 0.4 <0.2 <0.2 0.38 

MW-03 479 59.2 114 76 12.7 0.4 0.22 <0.2 3.0 

MW-04 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-05 124 19.3 52.9 61.9 14.1 16.5 1.5 1.2 7.8 

MW-06 10.8 11.0 0.5 0.3 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-07 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-08 <0.2 <0.2 <0.2 0.19 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-09 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-10 <0.2 <0.2 <0.2 <0.1 0.24 0.2 <0.2 <0.2 <0.2 

MW-11 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-12 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-13 32.1 55.2 1.0 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-14 4.92 8.4 <0.2 0.4 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-15 56.9 309 34.8 62.6 9.9 4.8 <0.2 <0.2 1.0 

MW-16 320 55.5 86.6 60.0 9.3 <0.2 <0.2 <0.2 2.1 

MW-17 0.5 <0.2 0.7 0.2 <0.2 <0.2 <0.2 <0.2 0.3 

MW-18 0.7 4.02 0.9 0.4 4.2 3.9 <0.2 <0.2 0.7 

MW-19 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-20 <0.2 0.9 0.4 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-21 <0.2 4.5 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-22 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-23 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-24 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-25 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-26 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-27 24.8 78.6 3.8 8.6 0.3 <0.2 <0.2 <0.2 <0.2 

MW-28 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 
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Table A.2c Average contaminant concentrations measured in monitoring wells at the Cherokee FMGP Site 

Monitoring Average Groundwater Concentrations (ug/L) 
_Wc" L. 5-Ring PAH 6-Ring PAH 
Wdl Nest I " 

Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Indeno(l,2,3-c,d) 
pyrene 

MW-01 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-02 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-03 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-04 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-05 0.6 0.7 <0.2 <0.2 <0.2 <0.2 

MW-06 <0.2 <0.2 <0.2 <0.2 1.2 0.8 

MW-07 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-08 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-09 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-10 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-11 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-12 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-13 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-14 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-15 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-16 <0.2 <0.2 0.9 <0.2 <0.2 <0.2 

MW-17 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-18 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-19 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-20 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-21 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-22 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-23 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-24 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-25 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-26 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-27 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

MW-28 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 
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APPENDIX B. GROUNDWATER SAMPLING METHODS 
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Table B.l Analytical methods for groundwater sampling used in the study 

Analyte Preservation method* Method PQLf 

Hg/L 
Method Basis 

On Site Analyses: 
Inorganics and Nutrients 

Total Hardness" HACH #8213 10000 Titrimetric (EOTA) 
Alkalinity-4 HACH #8203 10000 Titrimetric (Phenolphthalein and Total) 
Ammonium-N " HACH #10023 10 Spectrophotometric, Salicylate 
Nitrate-N" HACH #8171 100 Spectrophotometry, Cadmium Reduction 
Nitrite-N" HACH #8507 10 Spectrophotometric, Diazotization 
Ferrous Iron" HACH #8146 10 Spectrophotometric, 1,10 Phenanthroline 
Total Iron" HACH #8008 10 Spectrophotometric, FerroVer 
Total Manganese" HACH #8034 100 Spectrophotometric, Periodate Oxidation 
Sulfate" HACH #8051 2000 Spectrophotometric, SulfaVer 4 
Sulfide" HACH #8131 10 Spectrophotometric, Methylene Blue 

Water Quality Parameters 
Dissolved Oxygen NA EPA 360.1 0.01 mgL'1 Electrode 
Temperature NA Probe -5 - 50 °C Electrode (±0.1 °C) 
pH"" EPA 150.1 0.001 Electrode 
Electrical Conductivity NA EPA 120.1 0.1 nS/cm Electrode 
Redox PotentialNA SM 2580 B ±1600 mV Electrode 
Turbidity m SM 2130 B 0.01 NTU Nephelometric 

USEPA Certified Laboratory Analyses: 
Inorganics and Nutrients 

Calcium" EPA-SW: 6010 5000 Inductively Coupled Plasma (ICP) 
Magnesium" EPA-SW: 6010 5000 ICP 
Sodium" EPA-SW: 6010 5000 ICP 
Potassium " EPA-SW: 6010 5000 ICP 
Total Manganese " EPA-SW: 6010 15 ICP 
Total Iron EPA-SW: 6010 100 ICP 

Chloride c EPA-1 325.3 1000 Titrimetric 
Sulfate' EPA-1 375.4 2000 Turbidimetric 
Sulfide D EPA-1 376.2 50 Spectrophotometric 
Nitrate + Nitrite-N EPA-1 353.1 1000 Reduction, Spectrophotometric 

Ammonia-N A EPA-1 350.3 1000 Electrode 
Total Phosphorus" EPA-1 365.2 100 Spectrophotometric 
Ortho-Phosphorus J EPA-1 365.2 200 Spectrophotometric 

Bacterial 
Het. Plate Count SM 9215 1 CFU/mL Agar Pour Plate 

Pollutants 
PAHG EPA-SW: 8310 0.2 GC-MS 
BTEX" EPA-SW: 8021 1 GC-MS 

A = Held at 4°C, analyzed on site within 2 hours, B = HN03 to pH<2, 4°C for a maximum of 6 
months, C = 5 mL 1:1 HC1,4°C for a maximum of 28 days, D = zinc acetate + NaOH to pH>9,4°C for 
a maximum of 7 days, E = H2S04 to pH<2,4°C for a maximum of 28 days, F = 0.008% Na2S203 in a 
sterile container, 4°C for a maximum of 24 hours, G = 0.008% Na2S203 + HC1 to pH<2, 4°C for a 
maximum of 14 days, H = 4°C for a maximum of 7 Days prior to liquid:liquid extraction, I = 4°C for a 
maximum of 28 days, J = 4°C for a maximum of 2 days, NA = Not Applicable 
PQL = Practical Quantitation Limit 
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